論文の概要: Physics-informed low-rank neural operators with application to parametric elliptic PDEs
- arxiv url: http://arxiv.org/abs/2509.07687v1
- Date: Tue, 09 Sep 2025 12:54:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-10 14:38:27.315559
- Title: Physics-informed low-rank neural operators with application to parametric elliptic PDEs
- Title(参考訳): 物理インフォームド低ランクニューラル演算子とパラメトリック楕円型PDEへの応用
- Authors: Sebastian Schaffer, Lukas Exl,
- Abstract要約: 点クラウドデータ上で偏微分方程式(PDE)の解演算子を近似するニューラルネットワークフレームワークであるPILNOを提案する。
PILNOは、低ランクカーネル近似とエンコーダ・デコーダアーキテクチャを組み合わせることで、高速で連続的なワンショットの予測を可能にし、特定の離散化とは無関係である。
本稿では, 関数フィッティング, ポアソン方程式, 可変係数のスクリーニングポアソン方程式, パラメータ化ダーシー流など, 様々な問題に対して有効性を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present the Physics-Informed Low-Rank Neural Operator (PILNO), a neural operator framework for efficiently approximating solution operators of partial differential equations (PDEs) on point cloud data. PILNO combines low-rank kernel approximations with an encoder--decoder architecture, enabling fast, continuous one-shot predictions while remaining independent of specific discretizations. The model is trained using a physics-informed penalty framework, ensuring that PDE constraints and boundary conditions are satisfied in both supervised and unsupervised settings. We demonstrate its effectiveness on diverse problems, including function fitting, the Poisson equation, the screened Poisson equation with variable coefficients, and parameterized Darcy flow. The low-rank structure provides computational efficiency in high-dimensional parameter spaces, establishing PILNO as a scalable and flexible surrogate modeling tool for PDEs.
- Abstract(参考訳): 本稿では,PDE(偏微分方程式)の解演算子を点クラウドデータ上で効率的に近似するニューラルネットワークフレームワークであるPILNOについて述べる。
PILNOは、低ランクカーネル近似とエンコーダ・デコーダアーキテクチャを組み合わせることで、高速で連続的なワンショットの予測を可能にし、特定の離散化とは無関係である。
このモデルは物理インフォームドペナルティフレームワークを用いてトレーニングされ、PDE制約と境界条件が教師なしと教師なしの両方の設定で満たされることを保証する。
本稿では, 関数フィッティング, ポアソン方程式, 可変係数のスクリーニングポアソン方程式, パラメータ化ダーシー流など, 様々な問題に対して有効性を示す。
低ランク構造は高次元パラメータ空間における計算効率を提供し、PILNOをPDEのスケーラブルで柔軟な代理モデリングツールとして確立する。
関連論文リスト
- Accelerating PDE Solvers with Equation-Recast Neural Operator Preconditioning [9.178290601589365]
Minimal-Data Parametric Neural Operator Preconditioning (MD-PNOP) はパラメトリックPDEソルバを高速化するための新しいパラダイムである。
パラメータ偏差の残差を、トレーニングされたニューラル演算子を使用して、オフラインでソリューションを洗練させる、追加のソース用語として再キャストする。
固定ソース、単一グループ固有値、および多群結合固有値問題に対する完全順序忠実度を維持しつつ、計算時間の50%削減を一貫して達成する。
論文 参考訳(メタデータ) (2025-09-01T12:14:58Z) - Physics informed cell representations for variational formulation of multiscale problems [8.905008042172883]
偏微分方程式(PDE)を解くための有望なツールとして物理情報ニューラルネットワーク(PINN)が登場している
PINNはマルチスケールの特徴を持つPDEの解決には適していない。
本稿では,多層パーセプトロン(MLP)と結合した多層多層格子からなるセルベースモデルアーキテクチャを提案する。
本質的には,セルベースモデルと並列小クダnライブラリにより,コンバージェンス速度と数値精度が向上する。
論文 参考訳(メタデータ) (2024-05-27T02:42:16Z) - Physics-informed Discretization-independent Deep Compositional Operator Network [1.2430809884830318]
我々はPDEパラメータと不規則領域形状の様々な離散表現に一般化できる新しい物理インフォームドモデルアーキテクチャを提案する。
ディープ・オペレーター・ニューラルネットワークにインスパイアされた我々のモデルは、パラメータの繰り返し埋め込みの離散化に依存しない学習を含む。
提案手法の精度と効率を数値計算により検証した。
論文 参考訳(メタデータ) (2024-04-21T12:41:30Z) - Reduced-order modeling for parameterized PDEs via implicit neural
representations [4.135710717238787]
我々は、パラメータ化偏微分方程式(PDE)を効率的に解くために、新しいデータ駆動型低次モデリング手法を提案する。
提案フレームワークは、PDEを符号化し、パラメトリゼーションニューラルネットワーク(PNODE)を用いて、複数のPDEパラメータを特徴とする潜時ダイナミクスを学習する。
我々は,提案手法を大規模なレイノルズ数で評価し,O(103)の高速化と,基底真理値に対する1%の誤差を得る。
論文 参考訳(メタデータ) (2023-11-28T01:35:06Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
エンタングルメントをモデル化するためのチューナブルで効率的なニューラルネットワークであるLordNetを提案する。
ポアソン方程式と(2Dおよび3D)ナビエ・ストークス方程式を解く実験は、長距離の絡み合いがロードネットによってうまくモデル化できることを示した。
論文 参考訳(メタデータ) (2022-06-19T14:41:08Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。