論文の概要: Physics informed cell representations for variational formulation of multiscale problems
- arxiv url: http://arxiv.org/abs/2405.16770v1
- Date: Mon, 27 May 2024 02:42:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 19:16:00.329478
- Title: Physics informed cell representations for variational formulation of multiscale problems
- Title(参考訳): マルチスケール問題の変分定式化のための物理情報細胞表現
- Authors: Yuxiang Gao, Soheil Kolouri, Ravindra Duddu,
- Abstract要約: 偏微分方程式(PDE)を解くための有望なツールとして物理情報ニューラルネットワーク(PINN)が登場している
PINNはマルチスケールの特徴を持つPDEの解決には適していない。
本稿では,多層パーセプトロン(MLP)と結合した多層多層格子からなるセルベースモデルアーキテクチャを提案する。
本質的には,セルベースモデルと並列小クダnライブラリにより,コンバージェンス速度と数値精度が向上する。
- 参考スコア(独自算出の注目度): 8.905008042172883
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid advancement of graphical processing units, Physics-Informed Neural Networks (PINNs) are emerging as a promising tool for solving partial differential equations (PDEs). However, PINNs are not well suited for solving PDEs with multiscale features, particularly suffering from slow convergence and poor accuracy. To address this limitation of PINNs, this article proposes physics-informed cell representations for resolving multiscale Poisson problems using a model architecture consisting of multilevel multiresolution grids coupled with a multilayer perceptron (MLP). The grid parameters (i.e., the level-dependent feature vectors) and the MLP parameters (i.e., the weights and biases) are determined using gradient-descent based optimization. The variational (weak) form based loss function accelerates computation by allowing the linear interpolation of feature vectors within grid cells. This cell-based MLP model also facilitates the use of a decoupled training scheme for Dirichlet boundary conditions and a parameter-sharing scheme for periodic boundary conditions, delivering superior accuracy compared to conventional PINNs. Furthermore, the numerical examples highlight improved speed and accuracy in solving PDEs with nonlinear or high-frequency boundary conditions and provide insights into hyperparameter selection. In essence, by cell-based MLP model along with the parallel tiny-cuda-nn library, our implementation improves convergence speed and numerical accuracy.
- Abstract(参考訳): グラフィカル処理ユニットの急速な進歩に伴い、偏微分方程式(PDE)を解くための有望なツールとして物理情報ニューラルネットワーク(PINN)が登場しつつある。
しかし、PINNはマルチスケールの特徴を持つPDEの解決には適していない。
本稿では,多層パーセプトロン(MLP)と結合した多層多層格子からなるモデルアーキテクチャを用いて,多層ポアソン問題を解くための物理インフォームドセル表現を提案する。
格子パラメータ(レベル依存特徴ベクトル)とMDPパラメータ(重みとバイアス)は勾配差に基づく最適化を用いて決定される。
変分形式に基づく損失関数は、グリッドセル内の特徴ベクトルの線形補間を可能にすることにより、計算を加速する。
このセルベースMLPモデルは、ディリクレ境界条件の分離トレーニングスキームと周期境界条件のパラメータ共有スキームの使用を容易にし、従来のPINNよりも精度が高い。
さらに、非線形あるいは高周波境界条件でPDEを解く際の速度と精度の向上と、ハイパーパラメータ選択に関する洞察を提供する数値例を示した。
本質的には,セルベースMLPモデルと並列小クダnライブラリにより,コンバージェンス速度と数値精度の向上を実現している。
関連論文リスト
- RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法として広く応用されている。
本稿では,地域最適化としての新たな訓練パラダイムを提案し,理論的に検討する。
実践的なトレーニングアルゴリズムであるRerea Optimized PINN(RoPINN)は、この新しいパラダイムからシームレスに派生している。
論文 参考訳(メタデータ) (2024-05-23T09:45:57Z) - Learning solutions of parametric Navier-Stokes with physics-informed
neural networks [0.3989223013441816]
パラメトリックナビエ・ストークス方程式(NSE)の解関数の学習にPIN(Palformed-Informed Neural Networks)を利用する。
パラメータのパラメータを座標とともにPINの入力とみなし、パラメータのインスタンスに対するパラメトリックPDESの数値解に基づいてPINを訓練する。
提案手法は, 解関数を学習するPINNモデルを最適化し, 流量予測が質量・運動量の保存則と一致していることを確認する。
論文 参考訳(メタデータ) (2024-02-05T16:19:53Z) - Multilevel CNNs for Parametric PDEs [0.0]
偏微分方程式に対する多段階解法の概念とニューラルネットワークに基づくディープラーニングを組み合わせる。
より詳細な理論的解析により,提案アーキテクチャは乗算Vサイクルを任意の精度で近似できることを示した。
最先端のディープラーニングベースの解法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-04-01T21:11:05Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - Accelerated Solutions of Coupled Phase-Field Problems using Generative
Adversarial Networks [0.0]
我々は,エンコーダデコーダに基づく条件付きGeneLSTM層を用いたニューラルネットワークに基づく新しいフレームワークを開発し,Cahn-Hilliardマイクロ構造方程式を解く。
トレーニングされたモデルはメッシュとスケールに依存しないため、効果的なニューラル演算子としての応用が保証される。
論文 参考訳(メタデータ) (2022-11-22T08:32:22Z) - PIXEL: Physics-Informed Cell Representations for Fast and Accurate PDE
Solvers [4.1173475271436155]
物理インフォームドセル表現(PIXEL)と呼ばれる新しいデータ駆動型PDEの解法を提案する。
PIXELは古典的な数値法と学習に基づくアプローチをエレガントに組み合わせている。
PIXELは高速収束速度と高精度を実現する。
論文 参考訳(メタデータ) (2022-07-26T10:46:56Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Non-linear Independent Dual System (NIDS) for Discretization-independent
Surrogate Modeling over Complex Geometries [0.0]
非線形独立双対系(Non-linear independent dual system、NIDS)は、PDEソリューションの離散化独立で連続的な表現のための深層学習サロゲートモデルである。
NIDSは複雑な可変ジオメトリとメッシュトポロジを持つドメインの予測に使用できる。
テストケースには、複雑な幾何学とデータ不足を伴う車両の問題が含まれており、訓練方法によって実現されている。
論文 参考訳(メタデータ) (2021-09-14T23:38:41Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。