論文の概要: Reduced-order modeling for parameterized PDEs via implicit neural
representations
- arxiv url: http://arxiv.org/abs/2311.16410v1
- Date: Tue, 28 Nov 2023 01:35:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-01 00:16:07.120479
- Title: Reduced-order modeling for parameterized PDEs via implicit neural
representations
- Title(参考訳): 暗黙的ニューラル表現によるパラメータ化PDEの低次モデリング
- Authors: Tianshu Wen, Kookjin Lee, Youngsoo Choi
- Abstract要約: 我々は、パラメータ化偏微分方程式(PDE)を効率的に解くために、新しいデータ駆動型低次モデリング手法を提案する。
提案フレームワークは、PDEを符号化し、パラメトリゼーションニューラルネットワーク(PNODE)を用いて、複数のPDEパラメータを特徴とする潜時ダイナミクスを学習する。
我々は,提案手法を大規模なレイノルズ数で評価し,O(103)の高速化と,基底真理値に対する1%の誤差を得る。
- 参考スコア(独自算出の注目度): 4.135710717238787
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new data-driven reduced-order modeling approach to efficiently
solve parametrized partial differential equations (PDEs) for many-query
problems. This work is inspired by the concept of implicit neural
representation (INR), which models physics signals in a continuous manner and
independent of spatial/temporal discretization. The proposed framework encodes
PDE and utilizes a parametrized neural ODE (PNODE) to learn latent dynamics
characterized by multiple PDE parameters. PNODE can be inferred by a
hypernetwork to reduce the potential difficulties in learning PNODE due to a
complex multilayer perceptron (MLP). The framework uses an INR to decode the
latent dynamics and reconstruct accurate PDE solutions. Further, a
physics-informed loss is also introduced to correct the prediction of unseen
parameter instances. Incorporating the physics-informed loss also enables the
model to be fine-tuned in an unsupervised manner on unseen PDE parameters. A
numerical experiment is performed on a two-dimensional Burgers equation with a
large variation of PDE parameters. We evaluate the proposed method at a large
Reynolds number and obtain up to speedup of O(10^3) and ~1% relative error to
the ground truth values.
- Abstract(参考訳): 並列化偏微分方程式(PDE)を多値化問題に対して効率的に解くために,データ駆動型低次モデリング手法を提案する。
この研究は暗黙的神経表現(INR)の概念に触発され、物理信号を連続的にモデル化し、空間的・時間的離散化とは無関係である。
提案フレームワークは、PDEを符号化し、パラメトリゼーションニューラルネットワーク(PNODE)を用いて、複数のPDEパラメータを特徴とする潜時ダイナミクスを学習する。
PNODEは、複雑な多層パーセプトロン(MLP)によるPNODE学習の潜在的な困難を軽減するために、ハイパーネットワークによって推論できる。
このフレームワークはinrを使用して潜在ダイナミクスをデコードし、正確なpdeソリューションを再構築する。
さらに、未確認パラメータの予測を補正するために、物理情報損失も導入する。
物理インフォームド損失を組み込むことで、未知のPDEパラメータに基づいて教師なしの方法でモデルを微調整することもできる。
pdeパラメータの変動が大きい2次元バーガース方程式について数値実験を行った。
我々は,提案手法を大規模なレイノルズ数で評価し,O(10^3) の高速化と基底真理値に対する ~1% の誤差を得る。
関連論文リスト
- Parameterized Physics-informed Neural Networks for Parameterized PDEs [24.926311700375948]
本稿では,パラメータ化物理インフォームドニューラルネットワーク(PINN)の新たな拡張を提案する。
PINNはパラメータ化偏微分方程式(PDE)の解をPDEパラメータの潜在表現を明示的に符号化することでモデル化することができる。
P$2$INNs はベンチマーク 1D と 2D のパラメータ化 PDE において精度とパラメータ効率の両方でベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2024-08-18T11:58:22Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
広範にPDEを解くことができるUniversal PDEソルバ(Unisolver)を提案する。
私たちの重要な発見は、PDEソリューションが基本的に一連のPDEコンポーネントの制御下にあることです。
Unisolverは3つの挑戦的な大規模ベンチマークにおいて、一貫した最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-05-27T15:34:35Z) - Physics-informed Discretization-independent Deep Compositional Operator Network [1.2430809884830318]
我々はPDEパラメータと不規則領域形状の様々な離散表現に一般化できる新しい物理インフォームドモデルアーキテクチャを提案する。
ディープ・オペレーター・ニューラルネットワークにインスパイアされた我々のモデルは、パラメータの繰り返し埋め込みの離散化に依存しない学習を含む。
提案手法の精度と効率を数値計算により検証した。
論文 参考訳(メタデータ) (2024-04-21T12:41:30Z) - LatentPINNs: Generative physics-informed neural networks via a latent
representation learning [0.0]
本稿では,PDEパラメータの潜在表現をPINNに追加(座標に)入力として利用するフレームワークであるLatentPINNを紹介する。
まず,PDEパラメータの分布の潜在表現を学習する。
第2段階では、解領域内の座標空間からランダムに描画されたサンプルから得られる入力に対して、物理インフォームドニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2023-05-11T16:54:17Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Fully probabilistic deep models for forward and inverse problems in
parametric PDEs [1.9599274203282304]
本稿では,PDEのパラメータ・ツー・ソリューション(前方)と解・ツー・パラメータ(逆)マップを同時に学習する物理駆動型ディープ潜在変数モデル(PDDLVM)を提案する。
提案フレームワークは、観測データをシームレスに統合し、逆問題を解決するとともに、生成モデルを構築するために容易に拡張できる。
有限要素離散パラメトリックPDE問題に対して,本手法の有効性とロバスト性を示す。
論文 参考訳(メタデータ) (2022-08-09T15:40:53Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
本稿では,ニューラルPDEソルバサンプルの複雑性を改善することにより,この問題を部分的に緩和する手法を提案する。
PDEの文脈では、データ変換の完全なリストを定量的に導き出せることが分かりました。
神経性PDEソルバサンプルの複雑さを桁違いに改善するために、どのように容易に展開できるかを示す。
論文 参考訳(メタデータ) (2022-02-15T18:43:17Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - Neural-PDE: A RNN based neural network for solving time dependent PDEs [6.560798708375526]
偏微分方程式 (Partial differential equation, PDE) は、科学や工学における多くの問題を研究する上で重要な役割を果たしている。
本稿では,時間依存型PDEシステムのルールを自動的に学習する,Neural-PDEと呼ばれるシーケンス深層学習フレームワークを提案する。
我々の実験では、ニューラルPDEは20時間以内のトレーニングで効率よく力学を抽出し、正確な予測を行うことができる。
論文 参考訳(メタデータ) (2020-09-08T15:46:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。