論文の概要: Kernel-Based Nonparametric Tests For Shape Constraints
- arxiv url: http://arxiv.org/abs/2510.16745v2
- Date: Tue, 21 Oct 2025 01:05:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:11.847473
- Title: Kernel-Based Nonparametric Tests For Shape Constraints
- Title(参考訳): カーネルによる形状制約の非パラメトリック試験
- Authors: Rohan Sen,
- Abstract要約: サンプル推定器の統計的特性を導出し、厳密な理論的保証を提供する。
有限格子上の形状制約を検証するためのWald型合同統計法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a reproducing kernel Hilbert space (RKHS) framework for nonparametric mean-variance optimization and inference on shape constraints of the optimal rule. We derive statistical properties of the sample estimator and provide rigorous theoretical guarantees, such as asymptotic consistency, a functional central limit theorem, and a finite-sample deviation bound that matches the Monte Carlo rate up to regularization. Building on these findings, we introduce a joint Wald-type statistic to test for shape constraints over finite grids. The approach comes with an efficient computational procedure based on a pivoted Cholesky factorization, facilitating scalability to large datasets. Empirical tests suggest favorably of the proposed methodology.
- Abstract(参考訳): 非パラメトリック平均分散最適化のための再生カーネルヒルベルト空間(RKHS)フレームワークを開発し、最適規則の形状制約を推論する。
サンプル推定器の統計的性質を導出し、漸近的一貫性、機能的中心極限定理、およびモンテカルロ速度と正則化に一致する有限サンプル偏差のような厳密な理論的保証を提供する。
これらの結果に基づいて,有限格子上の形状制約を検証するためのWald型連立統計法を提案する。
このアプローチは、大規模なデータセットへのスケーラビリティを促進する、ピボットされたColesky分解に基づく効率的な計算手順によって実現されている。
実証実験は提案手法を好意的に提案する。
関連論文リスト
- On the Optimal Construction of Unbiased Gradient Estimators for Zeroth-Order Optimization [57.179679246370114]
既存の手法の潜在的な制限は、ステップサイズが提案されない限り、ほとんどの摂動推定器に固有のバイアスである。
本稿では, 良好な構成を維持しつつ, バイアスを排除した非バイアス勾配スケーリング推定器のファミリーを提案する。
論文 参考訳(メタデータ) (2025-10-22T18:25:43Z) - Neural Optimal Transport Meets Multivariate Conformal Prediction [58.43397908730771]
条件付きベクトル回帰(CVQR)のためのフレームワークを提案する。
CVQRは、ニューラルネットワークの最適輸送と量子化された最適化を組み合わせて、予測に適用する。
論文 参考訳(メタデータ) (2025-09-29T19:50:19Z) - Graph-based Clustering Revisited: A Relaxation of Kernel $k$-Means Perspective [73.18641268511318]
本稿では,クラスタリング結果を導出するための正規制約のみを緩和するグラフベースのクラスタリングアルゴリズムを提案する。
二重制約を勾配に変換するために、非負の制約をクラス確率パラメータに変換する。
論文 参考訳(メタデータ) (2025-09-23T09:14:39Z) - Assessing One-Dimensional Cluster Stability by Extreme-Point Trimming [0.0]
本研究では, 一次元試料のテール挙動と幾何学的安定性を評価するための確率的手法を開発した。
有限サンプル補正を含む解析式は、一様仮説とガウス仮説の両方の下で期待される縮退について導出する。
我々はさらにクラスタリングパイプライン(DBSCANなど)に統合し、密度推定やパラメータチューニングなしに1次元のクラスタを検証する能力を示す。
論文 参考訳(メタデータ) (2025-08-29T21:52:15Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
近点法はその数値的安定性と不完全なチューニングに対する頑健性からかなりの関心を集めている。
本稿では,近位点法(SPPM)の幅広いバリエーションの包括的解析について述べる。
論文 参考訳(メタデータ) (2024-05-24T21:09:19Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems [62.83783246648714]
目的と決定論的等式制約による非線形最適化問題を解くために,逐次2次プログラミングアルゴリズム(TR-StoSQP)を提案する。
アルゴリズムは信頼領域半径を適応的に選択し、既存の直線探索StoSQP方式と比較して不確定なヘッセン行列を利用することができる。
論文 参考訳(メタデータ) (2022-11-29T05:52:17Z) - Mathematical Properties of Continuous Ranked Probability Score
Forecasting [0.0]
分布回帰法によるCRPSの収束率について検討する。
分布回帰に対するk-アネレスト近傍法とカーネル法が,次元$dgeq2$の収束率の最適値に達することを示す。
論文 参考訳(メタデータ) (2022-05-09T15:01:13Z) - Optimal prediction for kernel-based semi-functional linear regression [5.827901300943599]
半関数線形モデルにおける予測のための収束の最小値を求める。
その結果, よりスムーズな関数成分は, 非パラメトリック成分が知られているようなミニマックス速度で学習できることが判明した。
論文 参考訳(メタデータ) (2021-10-29T04:55:44Z) - Online Statistical Inference for Stochastic Optimization via
Kiefer-Wolfowitz Methods [8.890430804063705]
The distribution for the Polyak-Ruppert-averaging type Kiefer-Wolfowitz (AKW) estimators。
分布結果は、統計効率と関数クエリの複雑さのトレードオフを反映している。
論文 参考訳(メタデータ) (2021-02-05T19:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。