論文の概要: Artificial Intelligence and Accounting Research: A Framework and Agenda
- arxiv url: http://arxiv.org/abs/2511.16055v1
- Date: Thu, 20 Nov 2025 05:18:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-21 17:08:52.480674
- Title: Artificial Intelligence and Accounting Research: A Framework and Agenda
- Title(参考訳): 人工知能と会計研究:フレームワークとアジェンダ
- Authors: Theophanis C. Stratopoulos, Victor Xiaoqi Wang,
- Abstract要約: ジェネレーティブAI(GenAI)と大規模言語モデル(LLM)は会計研究を変革している。
本稿では,研究焦点と方法論的アプローチの2つの側面に沿ってAI会計研究を分類する枠組みを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advances in artificial intelligence, particularly generative AI (GenAI) and large language models (LLMs), are fundamentally transforming accounting research, creating both opportunities and competitive threats for scholars. This paper proposes a framework that classifies AI-accounting research along two dimensions: research focus (accounting-centric versus AI-centric) and methodological approach (AI-based versus traditional methods). We apply this framework to papers from the IJAIS special issue and recent AI-accounting research published in leading accounting journals to map existing studies and identify research opportunities. Using this same framework, we analyze how accounting researchers can leverage their expertise through strategic positioning and collaboration, revealing where accounting scholars' strengths create the most value. We further examine how GenAI and LLMs transform the research process itself, comparing the capabilities of human researchers and AI agents across the entire research workflow. This analysis reveals that while GenAI democratizes certain research capabilities, it simultaneously intensifies competition by raising expectations for higher-order contributions where human judgment, creativity, and theoretical depth remain valuable. These shifts call for reforming doctoral education to cultivate comparative advantages while building AI fluency.
- Abstract(参考訳): 人工知能の最近の進歩、特に生成型AI(GenAI)と大規模言語モデル(LLM)は、会計研究を根本的に変革し、学者にとって機会と競争上の脅威を生み出している。
本稿では,研究焦点(AI中心対AI中心対)と方法論的アプローチ(AIベース対従来の手法)の2つの側面に沿ってAI会計研究を分類する枠組みを提案する。
我々は、IJAISの特別号と、主要な会計ジャーナルに掲載された最近のAI会計研究の論文にこの枠組みを適用し、既存の研究をマッピングし、研究機会を特定する。
この枠組みを用いて,アカウンティング研究者が戦略的な位置決めと協調を通じて,その専門知識をどのように活用できるかを分析し,アカウンティング研究者の強みが最も価値を生んでいるかを明らかにする。
我々はさらに、GenAIとLLMが研究プロセス自体を変換し、研究ワークフロー全体にわたる人間研究者とAIエージェントの能力を比較した。
この分析は、GenAIが特定の研究能力を民主化する一方で、人間の判断、創造性、理論的な深さが価値のある高次貢献への期待を高めることによって、競争を同時に強化していることを示している。
これらのシフトは、AI流布を構築しながら比較優位性を育むために、博士教育を改革することを要求する。
関連論文リスト
- ResearcherBench: Evaluating Deep AI Research Systems on the Frontiers of Scientific Inquiry [22.615102398311432]
我々は、ディープAI研究システムの能力を評価することに焦点を当てた最初のベンチマークであるResearcherBenchを紹介する。
現実の科学的シナリオから専門的に選択された65の質問のデータセットを収集した。
OpenAI Deep ResearchとGemini Deep Researchは、他のシステムよりも格段に優れており、オープンエンドのコンサルティングの質問では特に強みがある。
論文 参考訳(メタデータ) (2025-07-22T06:51:26Z) - AI4Research: A Survey of Artificial Intelligence for Scientific Research [55.5452803680643]
我々はAI for Research(AI4Research)に関する総合的な調査を行う。
まず、AI4Researchの5つの主要なタスクを分類する系統分類を導入する。
主要な研究ギャップを特定し、将来有望な方向性を明らかにする。
論文 参考訳(メタデータ) (2025-07-02T17:19:20Z) - AI-Researcher: Autonomous Scientific Innovation [13.58669328864436]
我々は,AIによる科学的発見の実施と評価の方法を変える,完全自律型研究システムであるAI-Researcherを紹介する。
本フレームワークは,文献レビューや仮説生成からアルゴリズムの実装,出版可能な原稿作成に至るまで,完全な研究パイプラインをシームレスに編成する。
論文 参考訳(メタデータ) (2025-05-24T13:54:38Z) - The Design Space of Recent AI-assisted Research Tools for Ideation, Sensemaking, and Scientific Creativity [2.0558118968162673]
ジェネレーティブAI(GenAI)ツールは、学術研究のような知識労働における自動化の範囲と能力を拡張している。
認知とプロセスの合理化を約束する一方で、AI支援の研究ツールは自動化バイアスを高め、批判的思考を妨げる可能性がある。
論文 参考訳(メタデータ) (2025-02-22T16:42:11Z) - Generative AI Tools in Academic Research: Applications and Implications for Qualitative and Quantitative Research Methodologies [0.0]
本研究では,生成人工知能(GenAI)が学術研究に与える影響について検討し,質的・定量的データ分析への応用に焦点をあてる。
GenAIツールは急速に進化し、研究の生産性を高め、複雑な分析プロセスを民主化するための新たな可能性を提供する。
学術的実践への統合は、研究の完全性、セキュリティ、著作家精神、そして学術作品の変化する性質に関する重要な疑問を提起する。
論文 参考訳(メタデータ) (2024-08-13T13:10:03Z) - AI for social science and social science of AI: A Survey [47.5235291525383]
人工知能の最近の進歩は、人工知能の可能性を再考するきっかけとなった。
AIの人間的能力の増大は、社会科学研究にも注目されている。
論文 参考訳(メタデータ) (2024-01-22T10:57:09Z) - A Comprehensive Survey of Artificial Intelligence Techniques for Talent Analytics [46.025337523478825]
タレント分析は人的資源管理に応用されたデータ科学において有望な分野として現れてきた。
ビッグデータと人工知能技術の最近の発展は、人的資源管理に革命をもたらした。
論文 参考訳(メタデータ) (2023-07-03T07:53:20Z) - Characterising Research Areas in the field of AI [68.8204255655161]
トピックの共起ネットワーク上でクラスタリング分析を行うことで,主要な概念テーマを特定した。
その結果は、ディープラーニングや機械学習、物のインターネットといった研究テーマに対する学術的関心の高まりを浮き彫りにしている。
論文 参考訳(メタデータ) (2022-05-26T16:30:30Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z) - A narrowing of AI research? [0.0]
学術と民間におけるAI研究のテーマ的多様性の進化について研究する。
我々は、AI研究における民間企業の影響力を、彼らが受け取った引用と他の機関とのコラボレーションを通じて測定する。
論文 参考訳(メタデータ) (2020-09-22T08:23:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。