論文の概要: DBAW-PIKAN: Dynamic Balance Adaptive Weight Kolmogorov-Arnold Neural Network for Solving Partial Differential Equations
- arxiv url: http://arxiv.org/abs/2512.22283v1
- Date: Thu, 25 Dec 2025 06:47:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-30 22:37:29.958683
- Title: DBAW-PIKAN: Dynamic Balance Adaptive Weight Kolmogorov-Arnold Neural Network for Solving Partial Differential Equations
- Title(参考訳): DBAW-PIKAN:部分微分方程式を解くための動的バランス適応重みKolmogorov-Arnoldニューラルネットワーク
- Authors: Guokan Chen, Yao Xiao,
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は科学計算において大きな進歩をもたらした。
PINNは勾配流とスペクトルバイアスの剛性に関連する永続的で厳しい課題に遭遇する。
本稿では,動的バランシング適応重み付け物理インフォームドコルモゴロフ・アルノルドネットワーク(DBAW-PIKAN)を提案する。
- 参考スコア(独自算出の注目度): 11.087203453701568
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs) have led to significant advancements in scientific computing by integrating fundamental physical principles with advanced data-driven techniques. However, when dealing with problems characterized by multi-scale or high-frequency features, PINNs encounter persistent and severe challenges related to stiffness in gradient flow and spectral bias, which significantly limit their predictive capabilities. To address these issues, this paper proposes a Dynamic Balancing Adaptive Weighting Physics-Informed Kolmogorov-Arnold Network (DBAW-PIKAN), designed to mitigate such gradient-related failure modes and overcome the bottlenecks in function representation. The core of DBAW-PIKAN combines the Kolmogorov-Arnold network architecture, based on learnable B-splines, with an adaptive weighting strategy that incorporates a dynamic decay upper bound. Compared to baseline models, the proposed method accelerates the convergence process and improves solution accuracy by at least an order of magnitude without introducing additional computational complexity. A series of numerical benchmarks, including the Klein-Gordon, Burgers, and Helmholtz equations, demonstrate the significant advantages of DBAW-PIKAN in enhancing both accuracy and generalization performance.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、基本的な物理原理と高度なデータ駆動技術を統合することによって、科学計算の大幅な進歩をもたらした。
しかし、マルチスケールや高周波の特徴によって特徴づけられる問題を扱う場合、PINNは勾配流の剛性やスペクトルバイアスにかかわる永続的で深刻な問題に直面し、予測能力を著しく制限する。
これらの問題に対処するため,我々は,このような勾配関連障害モードを緩和し,関数表現のボトルネックを克服するために設計された動的分散適応重み付け物理インフォームド・コルモゴロフ・アルノルドネットワーク(DBAW-PIKAN)を提案する。
DBAW-PIKANのコアは、学習可能なB-スプラインに基づくKolmogorov-Arnoldネットワークアーキテクチャと、動的減衰上界を含む適応重み付け戦略を組み合わせたものである。
ベースラインモデルと比較して,提案手法は収束過程を加速し,さらに計算複雑性を伴わずに,少なくとも1桁の精度で解の精度を向上させる。
Klein-Gordon、Burgers、Helmholtz等を含む一連の数値ベンチマークは、DBAW-PIKANの精度と一般化性能の両面で大きな利点を示している。
関連論文リスト
- Unlocking Out-of-Distribution Generalization in Dynamics through Physics-Guided Augmentation [46.40087254928057]
物理誘導量拡張プラグインのSPARKについて述べる。
多様なベンチマーク実験により、SPARKは最先端のベースラインを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2025-10-28T09:30:35Z) - A Residual Guided strategy with Generative Adversarial Networks in training Physics-Informed Transformer Networks [8.614387766858496]
本稿では,GAN(Generative Adrative Network)を用いた物理入力変換器の残留指導戦略を提案する。
我々のフレームワークはトランスフォーマーを統合し、自己回帰処理によって時間的相関を本質的にキャプチャし、残差認識GANと組み合わせる。
アレン=カーン=ゴルドン方程式とナヴィエ=ストークス方程式の実験は、ベースライン法と比較して3桁の相対的なMSEの減少を示す。
論文 参考訳(メタデータ) (2025-07-15T03:45:42Z) - Optimizing the Optimizer for Physics-Informed Neural Networks and Kolmogorov-Arnold Networks [3.758814046658822]
物理情報ニューラルネットワーク(PINN)は、部分マグニチュード方程式(PDE)をニューラルネットワークのトレーニングプロセスにソフト制約として統合することにより、計算PDEソリューションに革命をもたらした。
さらに、物理インフォームドネットワーク(PIKAN)も有効であり、精度も同等である。
論文 参考訳(メタデータ) (2025-01-22T21:19:42Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Towards Model Discovery Using Domain Decomposition and PINNs [44.99833362998488]
物理インフォームドニューラルネットワーク(PINN)と有限基底物理インフォームドニューラルネットワーク(FBPINN)の2つの手法の性能評価を行った。
バニラPINN法と比較して,準定常時間領域のみのデータがほとんどない場合であっても,FBPINN法の方が優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-02T14:38:37Z) - Enriched Physics-informed Neural Networks for Dynamic
Poisson-Nernst-Planck Systems [0.8192907805418583]
本稿では、動的Poisson-Nernst-Planck(PNP)方程式を解くために、メッシュレス深層学習アルゴリズム、EPINN(enriched Physics-informed Neural Network)を提案する。
EPINNは、従来の物理インフォームドニューラルネットワークを基盤フレームワークとして、損失関数のバランスをとるために適応的な損失重みを追加する。
数値計算の結果, 結合された非線形系の解法において, 従来の数値法よりも適用性が高いことがわかった。
論文 参考訳(メタデータ) (2024-02-01T02:57:07Z) - A Deep Unrolling Model with Hybrid Optimization Structure for Hyperspectral Image Deconvolution [50.13564338607482]
本稿では,DeepMixと呼ばれるハイパースペクトルデコンボリューション問題に対する新しい最適化フレームワークを提案する。
これは3つの異なるモジュール、すなわちデータ一貫性モジュール、手作りの正規化器の効果を強制するモジュール、および装飾モジュールで構成されている。
本研究は,他のモジュールの協調作業によって達成される進歩を維持するために設計された,文脈を考慮した認知型モジュールを提案する。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Physics-aware deep learning framework for linear elasticity [0.0]
本稿では,線形連続弾性問題に対する効率的で堅牢なデータ駆動型ディープラーニング(DL)計算フレームワークを提案する。
フィールド変数の正確な表現のために,多目的損失関数を提案する。
弾性に対するAirimaty解やKirchhoff-Loveプレート問題を含むいくつかのベンチマーク問題を解く。
論文 参考訳(メタデータ) (2023-02-19T20:33:32Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Inverse-Dirichlet Weighting Enables Reliable Training of Physics
Informed Neural Networks [2.580765958706854]
我々は、深層ニューラルネットワークのトレーニング中に、スケール不均衡を伴うマルチスケールダイナミクスから生じる障害モードを記述し、治療する。
PINNは、物理方程式モデルとデータとのシームレスな統合を可能にする、一般的な機械学習テンプレートである。
逐次トレーニングを用いた逆モデリングでは,逆ディリクレ重み付けがPINNを破滅的忘れから保護することがわかった。
論文 参考訳(メタデータ) (2021-07-02T10:01:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。