論文の概要: Learning Coupled System Dynamics under Incomplete Physical Constraints and Missing Data
- arxiv url: http://arxiv.org/abs/2512.23761v1
- Date: Sun, 28 Dec 2025 22:02:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-01 23:27:28.145112
- Title: Learning Coupled System Dynamics under Incomplete Physical Constraints and Missing Data
- Title(参考訳): 不完全な物理的制約と欠落データに基づく連成システムダイナミクスの学習
- Authors: Esha Saha, Hao Wang,
- Abstract要約: 音楽は、疎結合性によって誘導されるマルチタスクニューラルネットワークフレームワークで、部分的な物理的制約とデータ駆動学習を統合して、結合システムのフル次元ソリューションを復元する。
MUSICは, 複雑な結合系の解を, データスカースおよびノイズ条件下で正確に学習することを示した。
- 参考スコア(独自算出の注目度): 3.1231899978018824
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Advances in data acquisition and computational methods have accelerated the use of differential equation based modelling for complex systems. Such systems are often described by coupled (or more) variables, yet governing equation is typically available for one variable, while the remaining variable can be accessed only through data. This mismatch between known physics and observed data poses a fundamental challenge for existing physics-informed machine learning approaches, which generally assume either complete knowledge of the governing equations or full data availability across all variables. In this paper, we introduce MUSIC (Multitask Learning Under Sparse and Incomplete Constraints), a sparsity induced multitask neural network framework that integrates partial physical constraints with data-driven learning to recover full-dimensional solutions of coupled systems when physics-constrained and data-informed variables are mutually exclusive. MUSIC employs mesh-free (random) sampling of training data and sparsity regularization, yielding highly compressed models with improved training and evaluation efficiency. We demonstrate that MUSIC accurately learns solutions (shock wave solutions, discontinuous solutions, pattern formation solutions) to complex coupled systems under data-scarce and noisy conditions, consistently outperforming non-sparse formulations. These results highlight MUSIC as a flexible and effective approach for modeling partially observed systems with incomplete physical knowledge.
- Abstract(参考訳): データ取得と計算手法の進歩により、複雑なシステムにおける微分方程式に基づくモデリングの利用が加速された。
このようなシステムは結合変数(あるいはそれ以上の変数)によって記述されることが多いが、支配方程式は一般的に1つの変数に対して利用可能であり、残りの変数はデータを通してのみアクセス可能である。
この既知の物理学と観測データとのミスマッチは、既存の物理インフォームド機械学習アプローチに根本的な課題をもたらす。
本稿では,データ駆動学習と部分的物理的制約を統合し,物理制約付き変数とデータインフォームド変数が相互に排他的である場合に,結合システムの全次元解を復元する多タスクニューラルネットワークフレームワーク MUSIC (Multitask Learning Under Sparse and Incomplete Constraints) を紹介する。
MUSICはトレーニングデータとスパーシティ正規化のメッシュフリー(ランダム)サンプリングを採用し、トレーニングと評価効率を改善した高度に圧縮されたモデルを生成する。
MUSICは、データシャースでノイズの多い条件下で複雑な結合系の解(衝撃波解、不連続解、パターン形成解)を正確に学習し、非スパースな定式化を一貫して上回ることを示す。
これらの結果から, MUSICは, 不完全な物理知識を持つ部分観測系をモデル化するための, 柔軟かつ効果的な手法であることがわかった。
関連論文リスト
- From Physics to Machine Learning and Back: Part II - Learning and Observational Bias in PHM [52.64097278841485]
物理インフォームドモデリングとデータストラテジーによる学習と観察バイアスの導入は、モデルを物理的に一貫した信頼性のある予測へと導くことができるかを検討する。
メタラーニングや少数ショットラーニングなどの高速適応手法をドメイン一般化手法とともに検討する。
論文 参考訳(メタデータ) (2025-09-25T14:15:43Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
本研究では,高次元経験データから力学系を学習する手法を提案する。
我々は、システムの複数の異なるインスタンスからデータが利用できる設定に焦点を当てる。
我々は、単純な理論的分析と、合成および実世界のデータセットに関する広範な実験を通して行動を研究する。
論文 参考訳(メタデータ) (2023-06-21T07:52:07Z) - Physics-aware deep learning framework for linear elasticity [0.0]
本稿では,線形連続弾性問題に対する効率的で堅牢なデータ駆動型ディープラーニング(DL)計算フレームワークを提案する。
フィールド変数の正確な表現のために,多目的損失関数を提案する。
弾性に対するAirimaty解やKirchhoff-Loveプレート問題を含むいくつかのベンチマーク問題を解く。
論文 参考訳(メタデータ) (2023-02-19T20:33:32Z) - Neural Galerkin Schemes with Active Learning for High-Dimensional
Evolution Equations [44.89798007370551]
本研究では,高次元偏微分方程式を数値的に解くために,能動的学習を用いた学習データを生成するディープラーニングに基づくニューラル・ガレルキンスキームを提案する。
ニューラル・ガレルキンスキームはディラック・フランケル変分法に基づいて、残余を時間とともに最小化することで、ネットワークを訓練する。
提案したニューラル・ガレルキン・スキームの学習データ収集は,高次元におけるネットワークの表現力を数値的に実現するための鍵となる。
論文 参考訳(メタデータ) (2022-03-02T19:09:52Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Augmenting Physical Models with Deep Networks for Complex Dynamics
Forecasting [34.61959169976758]
APHYNITYは、深層データ駆動モデルを持つ微分方程式によって記述された不完全な物理力学を増大させる原理的なアプローチである。
これは、動的を2つのコンポーネントに分解することで構成されます。物理コンポーネントは、事前の知識を持つダイナミクスを、データ駆動コンポーネントは、物理モデルのエラーを説明します。
論文 参考訳(メタデータ) (2020-10-09T09:31:03Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Physics-informed learning of governing equations from scarce data [14.95055620484844]
本研究は, 偏微分方程式(PDE)を, 希少かつノイズの多い表現データから検出する物理インフォームド・ディープラーニング・フレームワークを提案する。
本手法の有効性とロバスト性は, 数値的にも実験的にも, 種々のPDEシステムの発見において実証される。
結果として得られる計算フレームワークは、実用的な応用における閉形式モデル発見の可能性を示している。
論文 参考訳(メタデータ) (2020-05-05T22:13:22Z) - Learning Stochastic Behaviour from Aggregate Data [52.012857267317784]
集約データから非線形ダイナミクスを学習することは、各個人の完全な軌道が利用できないため、難しい問題である。
本稿では,Fokker Planck Equation (FPE) の弱い形式を用いて,サンプル形式のデータの密度変化を記述する手法を提案する。
このようなサンプルベースのフレームワークでは、偏微分方程式(PDE)FPEを明示的に解くことなく、集約データから非線形ダイナミクスを学習することができる。
論文 参考訳(メタデータ) (2020-02-10T03:20:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。