論文の概要: Neural Chains and Discrete Dynamical Systems
- arxiv url: http://arxiv.org/abs/2601.00473v1
- Date: Thu, 01 Jan 2026 21:02:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-05 15:04:33.463862
- Title: Neural Chains and Discrete Dynamical Systems
- Title(参考訳): ニューラルネットワークと離散力学系
- Authors: Sauro Succi, Abhisek Ganguly, Santosh Ansumali,
- Abstract要約: 本稿では,機械学習(ML)アプリケーション間の類似性について,自己注意を伴わないトランスフォーマーアーキテクチャを用いて検討する。
標準的な数値離散化によるバーガー方程式とアイコン方程式の数値解の比較分析を行い、コメントする。
標準的な数値離散化とPINN学習は、本質的に同じ知識を得るための2つの異なる経路を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We inspect the analogy between machine-learning (ML) applications based on the transformer architecture without self-attention, {\it neural chains} hereafter, and discrete dynamical systems associated with discretised versions of neural integral and partial differential equations (NIE, PDE). A comparative analysis of the numerical solution of the (viscid and inviscid) Burgers and Eikonal equations via standard numerical discretization (also cast in terms of neural chains) and via PINN's learning is presented and commented on. It is found that standard numerical discretization and PINN learning provide two different paths to acquire essentially the same knowledge about the dynamics of the system. PINN learning proceeds through random matrices which bear no direct relation to the highly structured matrices associated with finite-difference (FD) procedures. Random matrices leading to acceptable solutions are far more numerous than the unique tridiagonal form in matrix space, which explains why the PINN search typically lands on the random ensemble. The price is a much larger number of parameters, causing lack of physical transparency (explainability) as well as large training costs with no counterpart in the FD procedure. However, our results refer to one-dimensional dynamic problems, hence they don't rule out the possibility that PINNs and ML in general, may offer better strategies for high-dimensional problems.
- Abstract(参考訳): 自己注意のないトランスフォーマーアーキテクチャに基づく機械学習(ML)アプリケーションと、神経積分方程式と偏微分方程式(NIE, PDE)の離散化バージョンに関連する離散力学系との類似性について検討する。
標準的な数値離散化(ニューラルチェイン)とPINNの学習による(暗黙的かつ不可解な)バーガー方程式とアイコン方程式の数値解の比較分析を行い、コメントする。
標準的な数値離散化とPINN学習は、システムの力学について本質的に同じ知識を得るために、2つの異なる経路を提供する。
PINN学習は、有限差分法(FD)に付随する高度に構造化された行列と直接関係のないランダム行列を通して進行する。
許容できる解につながるランダム行列は行列空間の特異な三対角形よりもはるかに多く、なぜPINN探索が通常ランダムアンサンブルに着くのかを説明している。
価格は非常に多くのパラメータがあり、物理的透明性(説明可能性)の欠如と、FDプロシージャに匹敵しない大規模なトレーニングコストの原因となっている。
しかし, この結果から, PINN や ML が高次元問題に対してより良い戦略を提供する可能性については否定できない。
関連論文リスト
- Explicit Discovery of Nonlinear Symmetries from Dynamic Data [50.20526548924647]
LieNLSDは非線形項の無限小生成器の数とその明示的な表現を決定する最初の方法である。
LieNLSDは既存の手法に比べて質的な利点を示し、ニューラルPDEソルバの長期ロールアウト精度を20%以上改善する。
論文 参考訳(メタデータ) (2025-10-02T09:54:08Z) - A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations [0.6040014326756179]
本稿では,高次元非線形逆微分方程式を解くための新しい逆微分深層学習アルゴリズムを提案する。
ディープニューラルネットワーク(DNN)モデルは、入力やラベルだけでなく、対応するラベルの差分に基づいて訓練される。
論文 参考訳(メタデータ) (2024-04-12T13:05:35Z) - Physics-Informed Solution of The Stationary Fokker-Plank Equation for a
Class of Nonlinear Dynamical Systems: An Evaluation Study [0.0]
Fokker-Planck(FP)方程式の正確な解析解は、力学系の限られた部分集合に対してのみ利用できる。
その可能性を評価するために、FP方程式を解くために、データフリーで物理インフォームドニューラルネットワーク(PINN)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-25T13:17:34Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
通常の微分方程式(ODE)は、機械学習において最近多くの注目を集めている。
理論的な側面、例えば、統計的推定の識別可能性と特性は、いまだに不明である。
本稿では,1つの軌道からサンプリングされた等間隔の誤差のない観測結果から,同次線形ODE系の同定可能性について十分な条件を導出する。
論文 参考訳(メタデータ) (2022-10-12T06:46:38Z) - Learning stochastic dynamical systems with neural networks mimicking the
Euler-Maruyama scheme [14.436723124352817]
本稿では,SDEのパラメータを組み込みのSDE統合方式でニューラルネットワークで表現するデータ駆動手法を提案する。
このアルゴリズムは、幾何学的ブラウン運動とロレンツ-63モデルのバージョンに適用される。
論文 参考訳(メタデータ) (2021-05-18T11:41:34Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。