論文の概要: A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations
- arxiv url: http://arxiv.org/abs/2404.08456v1
- Date: Fri, 12 Apr 2024 13:05:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-15 14:57:03.529270
- Title: A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations
- Title(参考訳): 高次元非線形後方確率微分方程式を解くための後方微分深層学習に基づくアルゴリズム
- Authors: Lorenc Kapllani, Long Teng,
- Abstract要約: 本稿では,高次元非線形逆微分方程式を解くための新しい逆微分深層学習アルゴリズムを提案する。
ディープニューラルネットワーク(DNN)モデルは、入力やラベルだけでなく、対応するラベルの差分に基づいて訓練される。
- 参考スコア(独自算出の注目度): 0.6040014326756179
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose a novel backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations (BSDEs), where the deep neural network (DNN) models are trained not only on the inputs and labels but also the differentials of the corresponding labels. This is motivated by the fact that differential deep learning can provide an efficient approximation of the labels and their derivatives with respect to inputs. The BSDEs are reformulated as differential deep learning problems by using Malliavin calculus. The Malliavin derivatives of solution to a BSDE satisfy themselves another BSDE, resulting thus in a system of BSDEs. Such formulation requires the estimation of the solution, its gradient, and the Hessian matrix, represented by the triple of processes $\left(Y, Z, \Gamma\right).$ All the integrals within this system are discretized by using the Euler-Maruyama method. Subsequently, DNNs are employed to approximate the triple of these unknown processes. The DNN parameters are backwardly optimized at each time step by minimizing a differential learning type loss function, which is defined as a weighted sum of the dynamics of the discretized BSDE system, with the first term providing the dynamics of the process $Y$ and the other the process $Z$. An error analysis is carried out to show the convergence of the proposed algorithm. Various numerical experiments up to $50$ dimensions are provided to demonstrate the high efficiency. Both theoretically and numerically, it is demonstrated that our proposed scheme is more efficient compared to other contemporary deep learning-based methodologies, especially in the computation of the process $\Gamma$.
- Abstract(参考訳): 本研究では,高次元非線形後方確率微分方程式 (BSDEs) を解くための後方微分深層学習に基づく新しいアルゴリズムを提案し,深部ニューラルネットワーク(DNN)モデルは入力やラベルだけでなく,対応するラベルの微分も学習する。
これは、差分ディープラーニングが、入力に対するラベルとそのデリバティブの効率的な近似を提供するという事実に動機づけられている。
BSDE は、Malliavin calculus を用いて微分ディープラーニング問題として再構成される。
BSDE への解のマリアビン微分は、別の BSDE を満たすので、結果として BSDE の系となる。
そのような定式化は、解、勾配、ヘッセン行列を$\left(Y, Z, \Gamma\right)の3重プロセスで表す必要がある。
この系内のすべての積分は、オイラー・丸山法を用いて離散化される。
その後、DNNはこれらの未知のプロセスの3倍を近似するために使用される。
DNNパラメータは、離散化されたBSDEシステムの力学の重み付け和として定義される差分学習型損失関数を最小化し、各タイミングで後方に最適化される。
提案アルゴリズムの収束を示すために,誤差解析を行った。
高い効率を示すために、最大50ドルの数値実験が提供されている。
理論的にも数値的にも,提案手法は従来の深層学習手法よりも効率的であることが実証された。
関連論文リスト
- A forward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations [0.6040014326756179]
我々は、高次元非線形後方微分方程式(BSDEs)を解くための新しい前方微分深層学習アルゴリズムを提案する。
差分深度学習がラベルとその導関数を入力に対して効率的に近似できるという事実により、BSDE問題を差分深度学習問題に変換する。
アルゴリズムの主な考え方は、オイラー・丸山法を用いて積分を離散化し、3つのディープニューラルネットワークを用いて未知の離散解を近似することである。
論文 参考訳(メタデータ) (2024-08-10T19:34:03Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - Multi-Grade Deep Learning for Partial Differential Equations with
Applications to the Burgers Equation [3.5994228506864405]
本稿では,非線形偏微分方程式(PDE)を解くための多段階深層学習法を開発する。
ディープニューラルネットワーク(DNN)は、PDEを解く上で非常にパフォーマンスが高い。
本稿では, 1次元, 2次元, 3次元バーガース方程式にのみ焦点をあてる。
論文 参考訳(メタデータ) (2023-09-14T03:09:58Z) - Learning High-Dimensional Nonparametric Differential Equations via
Multivariate Occupation Kernel Functions [0.31317409221921133]
通常の微分方程式の非パラメトリック系を学ぶには、$d$変数の$d$関数を学ぶ必要がある。
明示的な定式化は、スパーシティや対称性といったシステム特性に関する追加の知識が得られない限り、$d$で2次的にスケールする。
本稿では,ベクトル値の再現Kernel Hilbert Spacesによる暗黙の定式化を用いた線形学習手法を提案する。
論文 参考訳(メタデータ) (2023-06-16T21:49:36Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - A deep branching solver for fully nonlinear partial differential
equations [0.1474723404975345]
完全非線形PDEの数値解に対する分岐アルゴリズムの多次元深層学習実装を提案する。
このアプローチは、任意の順序の勾配項を含む機能的非線形性に取り組むように設計されている。
論文 参考訳(メタデータ) (2022-03-07T09:46:46Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Deep neural network for solving differential equations motivated by
Legendre-Galerkin approximation [16.64525769134209]
線形微分方程式と非線形微分方程式の両方における様々なニューラルネットワークアーキテクチャの性能と精度について検討する。
我々は、微分方程式の解を予測するために、新しいレジェンダ-ガレルキンディープニューラルネットワーク(LGNet)アルゴリズムを実装した。
論文 参考訳(メタデータ) (2020-10-24T20:25:09Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。