論文の概要: hp-VPINNs: Variational Physics-Informed Neural Networks With Domain
Decomposition
- arxiv url: http://arxiv.org/abs/2003.05385v1
- Date: Wed, 11 Mar 2020 16:06:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-24 13:30:08.349615
- Title: hp-VPINNs: Variational Physics-Informed Neural Networks With Domain
Decomposition
- Title(参考訳): hp-VPINNs: 領域分割を伴う変分物理インフォームドニューラルネットワーク
- Authors: Ehsan Kharazmi, Zhongqiang Zhang, George Em Karniadakis
- Abstract要約: 浅部および深部ニューラルネットワークの非線形近似に基づいて,hp-VPINNの一般的な枠組みを定式化する。
関数近似と解微分方程式の数値例を数例に示すため,hp-VPINNsの精度と訓練コストの利点を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We formulate a general framework for hp-variational physics-informed neural
networks (hp-VPINNs) based on the nonlinear approximation of shallow and deep
neural networks and hp-refinement via domain decomposition and projection onto
space of high-order polynomials. The trial space is the space of neural
network, which is defined globally over the whole computational domain, while
the test space contains the piecewise polynomials. Specifically in this study,
the hp-refinement corresponds to a global approximation with local learning
algorithm that can efficiently localize the network parameter optimization. We
demonstrate the advantages of hp-VPINNs in accuracy and training cost for
several numerical examples of function approximation and solving differential
equations.
- Abstract(参考訳): 浅層および深層ニューラルネットワークの非線形近似と,高次多項式空間への領域分解と射影によるhp-refinementに基づくhp-variational physics-informed neural networks(hp-vpinns)の一般的な枠組みを定式化する。
試行空間はニューラルネットワークの空間であり、この空間は計算領域全体にわたってグローバルに定義され、テスト空間はピースワイズ多項式を含む。
具体的には、hp-refinementは、ネットワークパラメータ最適化を効率的にローカライズできる局所学習アルゴリズムによるグローバル近似に対応する。
関数近似と解微分方程式の数値例を数例に,hp-VPINNsの精度と訓練コストの利点を示す。
関連論文リスト
- Spectral Informed Neural Network: An Efficient and Low-Memory PINN [3.8534287291074354]
本稿では、微分演算子を乗法で置き換えるスペクトルベースニューラルネットワークを提案する。
PINNと比較して、我々のアプローチはメモリの削減とトレーニング時間の短縮を必要とする。
我々は、スペクトル情報を用いてネットワークを訓練する2つの戦略を提供する。
論文 参考訳(メタデータ) (2024-08-29T10:21:00Z) - On the Approximation and Complexity of Deep Neural Networks to Invariant
Functions [0.0]
深部ニューラルネットワークの不変関数への近似と複雑性について検討する。
様々なタイプのニューラルネットワークモデルにより、幅広い不変関数を近似できることを示す。
我々は,高分解能信号のパラメータ推定と予測を理論的結論と結びつけることが可能なアプリケーションを提案する。
論文 参考訳(メタデータ) (2022-10-27T09:19:19Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - PhyGNNet: Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network [12.385926494640932]
本稿では,グラフニューラルネットワークの基本値から偏微分方程式を解くためのPhyGNNetを提案する。
特に、計算領域を正規グリッドに分割し、グリッド上の偏微分演算子を定義し、PhyGNNetモデルを構築する最適化のためにネットワークのpde損失を構築する。
論文 参考訳(メタデータ) (2022-08-07T13:33:34Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable
domain decomposition approach for solving differential equations [20.277873724720987]
我々はFBPINN(Finite Basis PINNs)と呼ばれる微分方程式に関連する大きな問題を解くための新しいスケーラブルなアプローチを提案する。
FBPINNは古典的有限要素法に着想を得ており、微分方程式の解はコンパクトな支持を持つ基底関数の有限集合の和として表される。
FBPINNでは、ニューラルネットワークを使ってこれらの基底関数を学習する。
論文 参考訳(メタデータ) (2021-07-16T13:03:47Z) - LocalDrop: A Hybrid Regularization for Deep Neural Networks [98.30782118441158]
本稿では,ローカルラデマチャー複雑性を用いたニューラルネットワークの正規化のための新しい手法であるLocalDropを提案する。
フルコネクテッドネットワーク(FCN)と畳み込みニューラルネットワーク(CNN)の両方のための新しい正規化機能は、ローカルラデマチャー複雑さの上限提案に基づいて開発されました。
論文 参考訳(メタデータ) (2021-03-01T03:10:11Z) - Neural Network Approximations of Compositional Functions With
Applications to Dynamical Systems [3.660098145214465]
我々は,合成関数とそのニューラルネットワーク近似の近似理論を開発した。
構成関数の重要な特徴の集合と,ニューラルネットワークの特徴と複雑性の関係を同定する。
関数近似に加えて、ニューラルネットワークの誤差上限の式もいくつか証明する。
論文 参考訳(メタデータ) (2020-12-03T04:40:25Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Neural Operator: Graph Kernel Network for Partial Differential Equations [57.90284928158383]
この作業はニューラルネットワークを一般化し、無限次元空間(演算子)間の写像を学習できるようにすることである。
非線形活性化関数と積分作用素のクラスを構成することにより、無限次元写像の近似を定式化する。
実験により,提案したグラフカーネルネットワークには所望の特性があり,最先端技術と比較した場合の競合性能を示すことが確認された。
論文 参考訳(メタデータ) (2020-03-07T01:56:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。