論文の概要: Gaussian process learning of nonlinear dynamics
- arxiv url: http://arxiv.org/abs/2312.12193v2
- Date: Tue, 16 Apr 2024 17:06:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 23:35:28.112627
- Title: Gaussian process learning of nonlinear dynamics
- Title(参考訳): 非線形力学のガウス過程学習
- Authors: Dongwei Ye, Mengwu Guo,
- Abstract要約: モデルパラメータのキャラクタリゼーションのベイズ推定により非線形力学を学習する手法を提案する。
本稿では,提案手法の適用性について,力学系におけるいくつかの典型的なシナリオについて論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the pivotal tasks in scientific machine learning is to represent underlying dynamical systems from time series data. Many methods for such dynamics learning explicitly require the derivatives of state data, which are not directly available and can be approximated conventionally by finite differences. However, the discrete approximations of time derivatives may result in poor estimations when state data are scarce and/or corrupted by noise, thus compromising the predictiveness of the learned dynamical models. To overcome this technical hurdle, we propose a new method that learns nonlinear dynamics through a Bayesian inference of characterizing model parameters. This method leverages a Gaussian process representation of states, and constructs a likelihood function using the correlation between state data and their derivatives, yet prevents explicit evaluations of time derivatives. Through a Bayesian scheme, a probabilistic estimate of the model parameters is given by the posterior distribution, and thus a quantification is facilitated for uncertainties from noisy state data and the learning process. Specifically, we will discuss the applicability of the proposed method to several typical scenarios for dynamical systems: identification and estimation with an affine parametrization, nonlinear parametric approximation without prior knowledge, and general parameter estimation for a given dynamical system.
- Abstract(参考訳): 科学機械学習における重要な課題の1つは、時系列データから基礎となる力学系を表現することである。
このような動的学習のための多くの方法は、直接利用できない状態データの微分を明示的に要求し、伝統的に有限差分で近似することができる。
しかし、時間微分の離散近似は、状態データがノイズによって不足したり、あるいは破損したりする場合に低い推定結果をもたらす可能性があるため、学習された力学モデルの予測性を損なう。
この技術的ハードルを克服するために、モデルパラメータのキャラクタリゼーションのベイズ推定を通じて非線形力学を学習する新しい手法を提案する。
この方法は状態のガウス過程表現を利用し、状態データとそれらの導関数との相関を利用して可能性関数を構築するが、時間微分の明示的な評価は避ける。
ベイズスキームにより、モデルパラメータの確率的推定は後部分布によって与えられ、ノイズの多い状態データや学習過程からの不確実性に対して定量化が促進される。
具体的には、アフィンパラメトリゼーションによる同定と推定、事前知識のない非線形パラメトリック近似、与えられた力学系に対する一般パラメータ推定など、力学系に対する提案手法の適用性について論じる。
関連論文リスト
- Bayesian Spline Learning for Equation Discovery of Nonlinear Dynamics
with Quantified Uncertainty [8.815974147041048]
本研究では,非線形(時空間)力学の擬似的支配方程式を,定量化された不確実性を伴うスパースノイズデータから同定する枠組みを開発した。
提案アルゴリズムは、正準常微分方程式と偏微分方程式によって制御される複数の非線形力学系に対して評価される。
論文 参考訳(メタデータ) (2022-10-14T20:37:36Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
本稿では,部分的な観測を伴う複雑な乱流系の反復学習アルゴリズムを提案する。
モデル構造を識別し、観測されていない変数を復元し、パラメータを推定する。
数値実験により、新しいアルゴリズムはモデル構造を同定し、多くの複雑な非線形系に対して適切なパラメータ化を提供することに成功した。
論文 参考訳(メタデータ) (2022-08-19T00:35:03Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
線形力学系に従って未知のパラメータが進化することを前提とした時間変化線形回帰モデルを再検討する。
反対に、基礎となる力学が安定である場合、このモデルのパラメータは2つの通常の最小二乗推定と組み合わせることで、データから推定できることが示される。
論文 参考訳(メタデータ) (2021-12-29T23:37:06Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
本稿では,機械系の古典力学に対する変分積分器と,ガウス過程の回帰による残留力学の学習の組み合わせを提案する。
我々は、既知のキネマティック制約を持つシステムへのアプローチを拡張し、予測の不確実性に関する公式な境界を提供する。
論文 参考訳(メタデータ) (2021-12-10T11:09:29Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Gaussian processes meet NeuralODEs: A Bayesian framework for learning
the dynamics of partially observed systems from scarce and noisy data [0.0]
本稿では,非線形力学系の部分的,雑音的,不規則な観測からベイズ系を同定する機械学習フレームワーク(GP-NODE)を提案する。
提案手法は、微分可能プログラミングの最近の発展を利用して、通常の微分方程式解法を用いて勾配情報を伝播する。
捕食者予備システム,システム生物学,50次元ヒューマンモーションダイナミクスシステムを含む提案GP-NODE法の有効性を示すために,一連の数値的研究を行った。
論文 参考訳(メタデータ) (2021-03-04T23:42:14Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Neural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear
Dynamics [49.41640137945938]
ニューラルネットワークに基づくリフト関数を推定するためのニューラルダイナミックモード分解法を提案する。
提案手法により,予測誤差はニューラルネットワークとスペクトル分解によって逆伝搬される。
提案手法の有効性を,固有値推定と予測性能の観点から実証した。
論文 参考訳(メタデータ) (2020-12-11T08:34:26Z) - Data Assimilation Networks [1.5545257664210517]
データ同化は、システムの数学的表現とノイズの観測を組み合わせることで、力学系の状態を予測することを目的としている。
本稿では,再帰的エルマンネットワークとデータ同化アルゴリズムを一般化した完全データ駆動型ディープラーニングアーキテクチャを提案する。
本アーキテクチャは, 明示的な正規化手法を使わずに, システム状態の確率密度関数の解析と伝播の両面において, EnKF に匹敵する性能を達成している。
論文 参考訳(メタデータ) (2020-10-19T17:35:36Z) - Bayesian differential programming for robust systems identification
under uncertainty [14.169588600819546]
本稿では,非線形力学系のノイズ,スパース,不規則な観測からベイズ系を同定する機械学習フレームワークを提案する。
提案手法は、微分可能プログラミングの最近の発展を利用して、通常の微分方程式解法を用いて勾配情報を伝播する。
スパーシティプロモーティングプリエントを用いることで、下層の潜在力学に対する解釈可能かつ同義的な表現の発見が可能になる。
論文 参考訳(メタデータ) (2020-04-15T00:51:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。