論文の概要: Learning Constrained Dynamics with Gauss Principle adhering Gaussian
Processes
- arxiv url: http://arxiv.org/abs/2004.11238v1
- Date: Thu, 23 Apr 2020 15:26:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 09:39:19.964823
- Title: Learning Constrained Dynamics with Gauss Principle adhering Gaussian
Processes
- Title(参考訳): ガウス原理による制約付きダイナミクスの学習
- Authors: A. Rene Geist and Sebastian Trimpe
- Abstract要約: 本稿では,解析力学からの洞察とガウス過程の回帰を組み合わせ,モデルのデータ効率と制約整合性を改善することを提案する。
本モデルにより,制約付きシステムのデータから制約なしシステムの加速度を推定できる。
- 参考スコア(独自算出の注目度): 7.643999306446022
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The identification of the constrained dynamics of mechanical systems is often
challenging. Learning methods promise to ease an analytical analysis, but
require considerable amounts of data for training. We propose to combine
insights from analytical mechanics with Gaussian process regression to improve
the model's data efficiency and constraint integrity. The result is a Gaussian
process model that incorporates a priori constraint knowledge such that its
predictions adhere to Gauss' principle of least constraint. In return,
predictions of the system's acceleration naturally respect potentially
non-ideal (non-)holonomic equality constraints. As corollary results, our model
enables to infer the acceleration of the unconstrained system from data of the
constrained system and enables knowledge transfer between differing constraint
configurations.
- Abstract(参考訳): 機械システムの制約付きダイナミクスの同定は、しばしば困難である。
学習方法は分析分析を容易にするが、トレーニングにはかなりの量のデータを必要とする。
本稿では,解析力学からの洞察とガウス過程の回帰を組み合わせ,モデルのデータ効率と制約整合性を改善することを提案する。
その結果はガウスのプロセスモデルであり、予測が最小制約というガウスの原理に従うような事前制約知識が組み込まれている。
その見返りとして、システムの加速の予測は自然に非理想的(非)ホロノミック等式制約を尊重する。
本モデルでは,制約付きシステムのデータから制約なしシステムの加速度を推定し,異なる制約構成間の知識伝達を可能にする。
関連論文リスト
- No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
本稿では,従来の2段階モデリングプロセスから離れることで,低次元力学系をモデル化する概念シフトを提案する。
最初に閉形式方程式を発見して解析する代わりに、我々のアプローチ、直接意味モデリングは力学系の意味表現を予測する。
私たちのアプローチは、モデリングパイプラインを単純化するだけでなく、結果のモデルの透明性と柔軟性も向上します。
論文 参考訳(メタデータ) (2025-01-30T18:36:48Z) - CGNSDE: Conditional Gaussian Neural Stochastic Differential Equation for Modeling Complex Systems and Data Assimilation [1.4322470793889193]
条件付きニューラル微分方程式(CGNSDE)と呼ばれる新しい知識ベースおよび機械学習ハイブリッドモデリング手法を開発した。
標準的なニューラルネットワーク予測モデルとは対照的に、CGNSDEは前方予測タスクと逆状態推定問題の両方に効果的に取り組むように設計されている。
論文 参考訳(メタデータ) (2024-04-10T05:32:03Z) - Physics-Informed Kernel Embeddings: Integrating Prior System Knowledge
with Data-Driven Control [22.549914935697366]
カーネル埋め込みを用いたデータ駆動制御アルゴリズムに事前知識を組み込む手法を提案する。
提案手法は,カーネル学習問題におけるバイアス項として,システムダイナミクスの事前知識を取り入れたものである。
純粋にデータ駆動ベースライン上でのサンプル効率の向上と,我々のアプローチのアウト・オブ・サンプル一般化を実証する。
論文 参考訳(メタデータ) (2023-01-09T18:35:32Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
本稿では,機械系の古典力学に対する変分積分器と,ガウス過程の回帰による残留力学の学習の組み合わせを提案する。
我々は、既知のキネマティック制約を持つシステムへのアプローチを拡張し、予測の不確実性に関する公式な境界を提供する。
論文 参考訳(メタデータ) (2021-12-10T11:09:29Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Learning Stable Nonparametric Dynamical Systems with Gaussian Process
Regression [9.126353101382607]
データからガウス過程回帰に基づいて非パラメトリックリアプノフ関数を学習する。
非パラメトリック制御Lyapunov関数に基づく名目モデルの安定化は、トレーニングサンプルにおける名目モデルの挙動を変化させるものではないことを証明した。
論文 参考訳(メタデータ) (2020-06-14T11:17:17Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z) - Physics Informed Deep Kernel Learning [24.033468062984458]
物理インフォームドディープカーネル学習(PI-DKL)は、遅延源を持つ微分方程式で表される物理知識を利用する。
効率的かつ効果的な推論のために、潜伏変数を疎外し、崩壊したモデルエビデンスローバウンド(ELBO)を導出する。
論文 参考訳(メタデータ) (2020-06-08T22:43:31Z) - On dissipative symplectic integration with applications to
gradient-based optimization [77.34726150561087]
本稿では,離散化を体系的に実現する幾何学的枠組みを提案する。
我々は、シンプレクティックな非保守的、特に散逸的なハミルトン系への一般化が、制御された誤差まで収束率を維持することができることを示す。
論文 参考訳(メタデータ) (2020-04-15T00:36:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。