論文の概要: Shape-informed surrogate models based on signed distance function domain encoding
- arxiv url: http://arxiv.org/abs/2409.12400v1
- Date: Thu, 19 Sep 2024 01:47:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 15:03:37.764676
- Title: Shape-informed surrogate models based on signed distance function domain encoding
- Title(参考訳): 符号付き距離関数領域符号化に基づく形状インフォームドサロゲートモデル
- Authors: Linying Zhang, Stefano Pagani, Jun Zhang, Francesco Regazzoni,
- Abstract要約: パラメータ化偏微分方程式(PDE)の解を近似する代理モデルを構築するための非侵入的手法を提案する。
我々のアプローチは2つのニューラルネットワーク(NN)の組み合わせに基づいている。
- 参考スコア(独自算出の注目度): 8.052704959617207
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We propose a non-intrusive method to build surrogate models that approximate the solution of parameterized partial differential equations (PDEs), capable of taking into account the dependence of the solution on the shape of the computational domain. Our approach is based on the combination of two neural networks (NNs). The first NN, conditioned on a latent code, provides an implicit representation of geometry variability through signed distance functions. This automated shape encoding technique generates compact, low-dimensional representations of geometries within a latent space, without requiring the explicit construction of an encoder. The second NN reconstructs the output physical fields independently for each spatial point, thus avoiding the computational burden typically associated with high-dimensional discretizations like computational meshes. Furthermore, we show that accuracy in geometrical characterization can be further enhanced by employing Fourier feature mapping as input feature of the NN. The meshless nature of the proposed method, combined with the dimensionality reduction achieved through automatic feature extraction in latent space, makes it highly flexible and computationally efficient. This strategy eliminates the need for manual intervention in extracting geometric parameters, and can even be applied in cases where geometries undergo changes in their topology. Numerical tests in the field of fluid dynamics and solid mechanics demonstrate the effectiveness of the proposed method in accurately predict the solution of PDEs in domains of arbitrary shape. Remarkably, the results show that it achieves accuracy comparable to the best-case scenarios where an explicit parametrization of the computational domain is available.
- Abstract(参考訳): 本稿では,パラメータ化偏微分方程式(PDE)の解を近似した代理モデルを構築するための非侵入的手法を提案する。
我々のアプローチは、2つのニューラルネットワーク(NN)の組み合わせに基づいている。
最初のNNは、符号付き距離関数による幾何変数の暗黙的な表現を提供する。
この自動形状符号化技術は、エンコーダの明示的な構成を必要とせず、潜在空間内の幾何学のコンパクトで低次元の表現を生成する。
第2NNは、各空間点ごとに出力の物理場を独立に再構成するので、計算メッシュのような高次元の離散化に関連する計算負担を回避することができる。
さらに, NNの入力特徴としてフーリエ特徴写像を用いることにより, 幾何的特徴付けの精度をさらに高めることができることを示す。
提案手法のメッシュレス特性は,潜在空間における自動特徴抽出によって達成される次元の低減と相まって,高い柔軟性と計算効率を実現する。
この戦略は、幾何学的パラメーターの抽出に手動で介入する必要をなくし、幾何学的パラメーターがトポロジの変化を受ける場合にも適用できる。
流体力学と固体力学の分野における数値実験により,任意の形状の領域におけるPDEの解を正確に予測する手法の有効性が示された。
注目すべきは、計算領域の明示的なパラメトリゼーションが利用可能な最良のシナリオに匹敵する精度を達成できることである。
関連論文リスト
- An Extreme Learning Machine-Based Method for Computational PDEs in
Higher Dimensions [1.2981626828414923]
本稿では,確率型ニューラルネットワークに基づく高次元偏微分方程式(PDE)の解法について述べる。
本稿では,高次元線形・非線形定常・動的PDEの数値シミュレーションを行い,その性能を実証する。
論文 参考訳(メタデータ) (2023-09-13T15:59:02Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Non-linear Independent Dual System (NIDS) for Discretization-independent
Surrogate Modeling over Complex Geometries [0.0]
非線形独立双対系(Non-linear independent dual system、NIDS)は、PDEソリューションの離散化独立で連続的な表現のための深層学習サロゲートモデルである。
NIDSは複雑な可変ジオメトリとメッシュトポロジを持つドメインの予測に使用できる。
テストケースには、複雑な幾何学とデータ不足を伴う車両の問題が含まれており、訓練方法によって実現されている。
論文 参考訳(メタデータ) (2021-09-14T23:38:41Z) - Manifold learning-based polynomial chaos expansions for high-dimensional
surrogate models [0.0]
システム記述における不確実性定量化(UQ)のための多様体学習に基づく手法を提案する。
提案手法は高精度な近似を達成でき、UQタスクの大幅な高速化につながる。
論文 参考訳(メタデータ) (2021-07-21T00:24:15Z) - Improving Metric Dimensionality Reduction with Distributed Topology [68.8204255655161]
DIPOLEは、局所的、計量的項と大域的、位相的項の両方で損失関数を最小化し、初期埋め込みを補正する次元推論後処理ステップである。
DIPOLEは、UMAP、t-SNE、Isomapといった一般的な手法よりも多くの一般的なデータセットで優れています。
論文 参考訳(メタデータ) (2021-06-14T17:19:44Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
本研究では,eulerの離散化スキームに基づく非定常ode(フロー方程式)の解法として,深層残留ニューラルネットワークを用いた。
複雑なトポロジー保存変換の下での3次元形状の多種多様な登録問題について述べる。
論文 参考訳(メタデータ) (2021-02-16T04:07:13Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - The Random Feature Model for Input-Output Maps between Banach Spaces [6.282068591820945]
ランダム特徴モデルは、カーネルまたは回帰法に対するパラメトリック近似である。
本稿では、入力バナッハ空間を出力バナッハ空間にマッピングする演算子のためのデータ駆動サロゲートとしてランダム特徴モデルを使用する手法を提案する。
論文 参考訳(メタデータ) (2020-05-20T17:41:40Z) - Model Reduction and Neural Networks for Parametric PDEs [9.405458160620533]
無限次元空間間の入出力マップをデータ駆動で近似するフレームワークを開発した。
提案されたアプローチは、最近のニューラルネットワークとディープラーニングの成功に動機づけられている。
入力出力マップのクラスと、入力に対する適切な選択された確率測度について、提案手法の収束性を証明する。
論文 参考訳(メタデータ) (2020-05-07T00:09:27Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
有限幅2層ReLUネットワークの解析のための凸解析手法を開発した。
正規化学習問題に対する最適解が凸集合の極点として特徴づけられることを示す。
高次元では、トレーニング問題は無限に多くの制約を持つ有限次元凸問題としてキャストできることが示される。
論文 参考訳(メタデータ) (2020-02-25T23:05:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。