論文の概要: Particles to Partial Differential Equations Parsimoniously
- arxiv url: http://arxiv.org/abs/2011.04517v1
- Date: Mon, 9 Nov 2020 15:51:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-28 00:42:30.637852
- Title: Particles to Partial Differential Equations Parsimoniously
- Title(参考訳): 粒子から部分微分方程式へ
- Authors: Hassan Arbabi and Ioannis Kevrekidis
- Abstract要約: 粗粒の有効部分微分方程式は、予測や制御のような計算集約的なタスクにかなりの節約をもたらす可能性がある。
本稿では,ニューラルネットワークとマルチスケール計算を組み合わせる枠組みを,方程式自由数値の形で提案する。
素粒子シミュレーションから大まかな粒度進化方程式を抽出し, 未知のマクロスケール変数を用いた手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Equations governing physico-chemical processes are usually known at
microscopic spatial scales, yet one suspects that there exist equations, e.g.
in the form of Partial Differential Equations (PDEs), that can explain the
system evolution at much coarser, meso- or macroscopic length scales.
Discovering those coarse-grained effective PDEs can lead to considerable
savings in computation-intensive tasks like prediction or control. We propose a
framework combining artificial neural networks with multiscale computation, in
the form of equation-free numerics, for efficient discovery of such macro-scale
PDEs directly from microscopic simulations. Gathering sufficient microscopic
data for training neural networks can be computationally prohibitive;
equation-free numerics enable a more parsimonious collection of training data
by only operating in a sparse subset of the space-time domain. We also propose
using a data-driven approach, based on manifold learning and unnormalized
optimal transport of distributions, to identify macro-scale dependent
variable(s) suitable for the data-driven discovery of said PDEs. This approach
can corroborate physically motivated candidate variables, or introduce new
data-driven variables, in terms of which the coarse-grained effective PDE can
be formulated. We illustrate our approach by extracting coarse-grained
evolution equations from particle-based simulations with a priori unknown
macro-scale variable(s), while significantly reducing the requisite data
collection computational effort.
- Abstract(参考訳): 物理化学過程を司る方程式は、通常、微視的な空間スケールで知られているが、偏微分方程式(pdes)のような方程式が存在し、より粗い、メソまたはマクロな長さスケールで系の進化を説明することができる。
これらの粗い有効PDEを発見することで、予測や制御といった計算集約的なタスクが大幅に削減される可能性がある。
本研究では, ニューラルネットワークとマルチスケール計算を, 方程式のない数値の形で組み合わせた枠組みを提案し, 顕微鏡シミュレーションから直接, そのようなマクロスケールPDEを効率的に発見する。
方程式のない数値は、時空領域のスパースサブセットでのみ動作することにより、より微妙なトレーニングデータの収集を可能にする。
また,データ駆動型PDEの発見に適したマクロスケール依存変数を特定するために,多様体学習と分布の非正規化最適輸送に基づくデータ駆動型手法を提案する。
このアプローチは、物理的に動機付けられた候補変数の相関や、より粗い有効PDEを定式化できる新しいデータ駆動変数の導入が可能である。
本研究では,事前未知のマクロスケール変数を用いた粒子シミュレーションから粗粒度進化方程式を抽出し,必要なデータ収集量を大幅に削減する手法を提案する。
関連論文リスト
- MaD-Scientist: AI-based Scientist solving Convection-Diffusion-Reaction Equations Using Massive PINN-Based Prior Data [22.262191225577244]
科学的基礎モデル(SFM)にも同様のアプローチが適用できるかどうかを考察する。
数学辞書の任意の線形結合によって構築された偏微分方程式(PDE)の解の形で、低コストな物理情報ニューラルネットワーク(PINN)に基づく近似された事前データを収集する。
本研究では,1次元対流拡散反応方程式に関する実験的な証拠を提供する。
論文 参考訳(メタデータ) (2024-10-09T00:52:00Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
本研究では, 対象物へのトラクタブル密度関数の移動として, 確率密度からサンプリングする作業に取り組む。
物理インフォームドニューラルネットワーク(PINN)を用いて各偏微分方程式(PDE)の解を近似する。
PINNはシミュレーションと離散化のない最適化を可能にし、非常に効率的に訓練することができる。
論文 参考訳(メタデータ) (2024-07-10T17:39:50Z) - DynGMA: a robust approach for learning stochastic differential equations from data [13.858051019755283]
パラメータ化されたSDEの遷移密度に新しい近似を導入する。
本手法は, 完全に未知のドリフト拡散関数の学習において, ベースライン法と比較して精度が高い。
低時間解像度と可変、さらには制御不能な時間ステップサイズでデータを処理できる。
論文 参考訳(メタデータ) (2024-02-22T12:09:52Z) - Application of machine learning technique for a fast forecast of
aggregation kinetics in space-inhomogeneous systems [0.0]
機械学習(ML)技術を用いて直接計算の量を削減する方法について述べる。
本研究では,集合体の空間分布とその大きさ分布に対するML予測が計算時間を大幅に短縮し,直接数値シミュレーションの結果とよく一致することを示す。
論文 参考訳(メタデータ) (2023-12-07T19:50:40Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Learning effective stochastic differential equations from microscopic
simulations: combining stochastic numerics and deep learning [0.46180371154032895]
ニューラルネットワークを用いた実効SDEにおけるドリフトと拡散関数を近似した。
当社のアプローチでは、長いトラジェクトリを必要とせず、散在するスナップショットデータで動作し、スナップショット毎に異なるタイムステップを自然に処理するように設計されています。
論文 参考訳(メタデータ) (2021-06-10T13:00:18Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。