論文の概要: Differentiable Visual Computing for Inverse Problems and Machine
Learning
- arxiv url: http://arxiv.org/abs/2312.04574v1
- Date: Tue, 21 Nov 2023 23:02:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 14:56:56.872425
- Title: Differentiable Visual Computing for Inverse Problems and Machine
Learning
- Title(参考訳): 逆問題と機械学習のための微分可能ビジュアルコンピューティング
- Authors: Andrew Spielberg, Fangcheng Zhong, Konstantinos Rematas, Krishna
Murthy Jatavallabhula, Cengiz Oztireli, Tzu-Mao Li, and Derek Nowrouzezahrai
- Abstract要約: ビジュアルコンピューティング手法は、幾何学を解析し、固体、流体、その他の媒体を物理的にシミュレートし、光学技術で世界をレンダリングするために用いられる。
ディープラーニング(DL)は、一般的なアルゴリズムモデルの構築を可能にする。
DLは高度にパラメータ化されたニューラルネットワークアーキテクチャ -- ユニバーサル関数近似器 -- と勾配に基づく検索アルゴリズムによって実現されている。
- 参考スコア(独自算出の注目度): 27.45555082573493
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Originally designed for applications in computer graphics, visual computing
(VC) methods synthesize information about physical and virtual worlds, using
prescribed algorithms optimized for spatial computing. VC is used to analyze
geometry, physically simulate solids, fluids, and other media, and render the
world via optical techniques. These fine-tuned computations that operate
explicitly on a given input solve so-called forward problems, VC excels at. By
contrast, deep learning (DL) allows for the construction of general algorithmic
models, side stepping the need for a purely first principles-based approach to
problem solving. DL is powered by highly parameterized neural network
architectures -- universal function approximators -- and gradient-based search
algorithms which can efficiently search that large parameter space for optimal
models. This approach is predicated by neural network differentiability, the
requirement that analytic derivatives of a given problem's task metric can be
computed with respect to neural network's parameters. Neural networks excel
when an explicit model is not known, and neural network training solves an
inverse problem in which a model is computed from data.
- Abstract(参考訳): もともとコンピュータグラフィックスの応用のために設計されたビジュアルコンピューティング(VC)法は、空間コンピューティングに最適化された所定のアルゴリズムを用いて、物理的および仮想世界の情報を合成する。
VCは、幾何学を分析し、固体、流体、その他のメディアを物理的にシミュレートし、光学技術で世界をレンダリングするために使用される。
特定の入力に対して明示的に動作する微調整された計算は、いわゆる前方問題を解く。
対照的に、ディープラーニング(DL)は一般的なアルゴリズムモデルの構築を可能にする。
dlは、高度にパラメータ化されたニューラルネットワークアーキテクチャ -- ユニバーサル関数近似器 -- と、その大きなパラメータ空間を最適モデルのために効率的に探索できる勾配ベースの探索アルゴリズムによって駆動される。
このアプローチはニューラルネットワークの微分可能性によって予測され、与えられた問題のタスクメトリックの分析微分は、ニューラルネットワークのパラメータに関して計算可能である。
ニューラルネットワークは、明示的なモデルが知られていない場合に優れており、ニューラルネットワークトレーニングは、モデルがデータから計算される逆問題を解く。
関連論文リスト
- Chebyshev Spectral Neural Networks for Solving Partial Differential Equations [0.0]
この研究は、フィードフォワードニューラルネットワークモデルとエラーバックプロパゲーション原理を用いて、損失関数の計算に自動微分(AD)を利用する。
楕円偏微分方程式を用いて,CSNNモデルの数値効率と精度について検討し,よく知られた物理インフォームドニューラルネットワーク(PINN)法と比較した。
論文 参考訳(メタデータ) (2024-06-06T05:31:45Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Physics Informed Piecewise Linear Neural Networks for Process
Optimization [0.0]
ニューラルネットワークモデルに埋め込まれた最適化問題に対して,物理情報を用いた線形ニューラルネットワークモデルの更新が提案されている。
すべてのケースにおいて、物理インフォームドトレーニングニューラルネットワークに基づく最適結果は、大域的最適性に近い。
論文 参考訳(メタデータ) (2023-02-02T10:14:54Z) - Unsupervised Legendre-Galerkin Neural Network for Stiff Partial
Differential Equations [9.659504024299896]
本稿では,Regendre-Galerkinニューラルネットワークに基づく教師なし機械学習アルゴリズムを提案する。
提案したニューラルネットワークは、境界層挙動を有する特異摂動PDEと同様に、一般的な1Dおよび2DPDEに適用される。
論文 参考訳(メタデータ) (2022-07-21T00:47:47Z) - NeuralEF: Deconstructing Kernels by Deep Neural Networks [47.54733625351363]
従来のNystr"om式に基づく非パラメトリックなソリューションはスケーラビリティの問題に悩まされる。
最近の研究はパラメトリックなアプローチ、すなわち固有関数を近似するためにニューラルネットワークを訓練している。
教師なしおよび教師なしの学習問題の空間に一般化する新たな目的関数を用いて,これらの問題を解くことができることを示す。
論文 参考訳(メタデータ) (2022-04-30T05:31:07Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Neural Network Approximations of Compositional Functions With
Applications to Dynamical Systems [3.660098145214465]
我々は,合成関数とそのニューラルネットワーク近似の近似理論を開発した。
構成関数の重要な特徴の集合と,ニューラルネットワークの特徴と複雑性の関係を同定する。
関数近似に加えて、ニューラルネットワークの誤差上限の式もいくつか証明する。
論文 参考訳(メタデータ) (2020-12-03T04:40:25Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach [54.012791474906514]
本稿では,アップリンク無線通信システムにおけるチャネル割り当て問題について検討する。
我々の目標は、整数チャネル割り当て制約を受ける全ユーザの総和率を最大化することです。
計算複雑性が高いため、機械学習アプローチは計算効率のよい解を得るために用いられる。
論文 参考訳(メタデータ) (2020-01-12T15:54:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。