論文の概要: Constructions in combinatorics via neural networks
- arxiv url: http://arxiv.org/abs/2104.14516v1
- Date: Thu, 29 Apr 2021 17:32:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-30 16:14:42.258019
- Title: Constructions in combinatorics via neural networks
- Title(参考訳): ニューラルネットワークによる組合せ論の構成
- Authors: Adam Zsolt Wagner
- Abstract要約: 強化学習アルゴリズムを用いることで、グラフ理論におけるいくつかの開予想に対する明示的な構成や反例を見つけることができる。
予想の中には、パターン回避行列の永続性を最大化するブルールディとカオの問題や、グラフの隣接性と距離固有値に関連するいくつかの問題がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate how by using a reinforcement learning algorithm, the deep
cross-entropy method, one can find explicit constructions and counterexamples
to several open conjectures in extremal combinatorics and graph theory. Amongst
the conjectures we refute are a question of Brualdi and Cao about maximizing
permanents of pattern avoiding matrices, and several problems related to the
adjacency and distance eigenvalues of graphs.
- Abstract(参考訳): 本研究では,強化学習アルゴリズムである深層クロスエントロピー法を用いて,極値コンビネータとグラフ理論のいくつかの開予想に対する明示的な構成や反例を見出す方法を示す。
予想の中には、パターン回避行列の永続性を最大化するブルールディとカオの問題や、グラフの隣接性と距離固有値に関連するいくつかの問題がある。
関連論文リスト
- Neural Lattice Reduction: A Self-Supervised Geometric Deep Learning
Approach [14.536819369925398]
本研究では,一様行列の因子を出力する深層ニューラルネットワークを設計し,非直交格子基底をペナルライズして自己指導的に学習する。
論文 参考訳(メタデータ) (2023-11-14T13:54:35Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - The Dynamics of Riemannian Robbins-Monro Algorithms [101.29301565229265]
本稿では,Robins と Monro のセミナル近似フレームワークを一般化し拡張するリーマンアルゴリズムの族を提案する。
ユークリッドのそれと比較すると、リーマンのアルゴリズムは多様体上の大域線型構造が欠如しているため、はるかに理解されていない。
ユークリッド・ロビンス=モンロスキームの既存の理論を反映し拡張するほぼ確実な収束結果の一般的なテンプレートを提供する。
論文 参考訳(メタデータ) (2022-06-14T12:30:11Z) - Multi-task Learning of Order-Consistent Causal Graphs [59.9575145128345]
我々は、$K関連ガウス非巡回グラフ(DAG)の発見問題を考える。
マルチタスク学習環境下では, 線形構造方程式モデルを学習するためのMLE ($l_1/l$-regularized maximum chance estimator) を提案する。
理論的には、関係するタスクにまたがるデータを活用することで、因果順序を復元する際のサンプルの複雑さをより高めることができることを示す。
論文 参考訳(メタデータ) (2021-11-03T22:10:18Z) - Partial Counterfactual Identification from Observational and
Experimental Data [83.798237968683]
観測データと実験データの任意の組み合わせから最適境界を近似する有効なモンテカルロアルゴリズムを開発した。
我々のアルゴリズムは、合成および実世界のデータセットに基づいて広範囲に検証されている。
論文 参考訳(メタデータ) (2021-10-12T02:21:30Z) - Topological Link Models of Multipartite Entanglement [0.20999222360659606]
グラフやハイパーグラフで表すことができないエントロピーベクトルのリンク表現が存在することを示す。
縮尺写像証明法はトポロジカルセッティングに一般化するが、現在ではノット理論ではよく知られているが難しい問題に対して論理解を必要とする。
論文 参考訳(メタデータ) (2021-09-02T18:00:05Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
結合ネットワークトポロジ推論は、異種グラフ信号から複数のグラフラプラシア行列を学習する標準的な問題を表す。
新規な構造化融合正規化に基づく一般グラフ推定器を提案する。
提案するグラフ推定器は高い計算効率と厳密な理論保証の両方を享受できることを示す。
論文 参考訳(メタデータ) (2021-03-05T04:42:32Z) - The multilayer random dot product graph [6.722870980553432]
ランダムドット積グラフ(ランダムドット積グラフ)と呼ばれる潜在位置ネットワークモデルの包括的拡張を提案する。
本稿では,サブマトリクスを適切な潜在空間に埋め込む手法を提案する。
単一グラフ埋め込みによるリンク予測の実証的な改善がサイバーセキュリティの例で示されている。
論文 参考訳(メタデータ) (2020-07-20T20:31:39Z) - Simple heuristics for efficient parallel tensor contraction and quantum
circuit simulation [1.4416132811087747]
本稿では,確率モデルを用いたテンソルネットワークの縮約のための並列アルゴリズムを提案する。
結果のアルゴリズムをランダム量子回路のシミュレーションに適用する。
論文 参考訳(メタデータ) (2020-04-22T23:00:42Z) - Understanding Graph Neural Networks with Generalized Geometric
Scattering Transforms [67.88675386638043]
散乱変換は、畳み込みニューラルネットワークのモデルとして機能する多層ウェーブレットベースのディープラーニングアーキテクチャである。
非対称ウェーブレットの非常に一般的なクラスに基づくグラフに対して、窓付きおよび非窓付き幾何散乱変換を導入する。
これらの非対称グラフ散乱変換は、対称グラフ散乱変換と多くの理論的保証を持つことを示す。
論文 参考訳(メタデータ) (2019-11-14T17:23:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。