論文の概要: Physics-informed neural networks for solving Reynolds-averaged
Navier$\unicode{x2013}$Stokes equations
- arxiv url: http://arxiv.org/abs/2107.10711v1
- Date: Thu, 22 Jul 2021 14:34:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-23 15:18:16.030089
- Title: Physics-informed neural networks for solving Reynolds-averaged
Navier$\unicode{x2013}$Stokes equations
- Title(参考訳): レイノルズ平均化 Navier$\unicode{x2013}$Stokes 方程式を解く物理インフォームドニューラルネットワーク
- Authors: Hamidreza Eivazi, Mojtaba Tahani, Philipp Schlatter, Ricardo Vinuesa
- Abstract要約: 我々は、特定のモデルや仮定なしで非圧縮性乱流の方程式を解くためにPINNを使用する。
乱流の場合,1%の精度で非常に良好な精度が得られる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs) are successful machine-learning
methods for the solution and identification of partial differential equations
(PDEs). We employ PINNs for solving the Reynolds-averaged
Navier$\unicode{x2013}$Stokes (RANS) equations for incompressible turbulent
flows without any specific model or assumption for turbulence, and by taking
only the data on the domain boundaries. We first show the applicability of
PINNs for solving the Navier$\unicode{x2013}$Stokes equations for laminar flows
by solving the Falkner$\unicode{x2013}$Skan boundary layer. We then apply PINNs
for the simulation of four turbulent-flow cases, i.e., zero-pressure-gradient
boundary layer, adverse-pressure-gradient boundary layer, and turbulent flows
over a NACA4412 airfoil and the periodic hill. Our results show the excellent
applicability of PINNs for laminar flows with strong pressure gradients, where
predictions with less than 1% error can be obtained. For turbulent flows, we
also obtain very good accuracy on simulation results even for the
Reynolds-stress components.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)の解法と同定のための機械学習手法として成功している。
我々は,特定のモデルや乱流の仮定を伴わない非圧縮性乱流に対するレイノルズ平均navier$\unicode{x2013}$stokes(rans)方程式の解法と,領域境界のデータのみを取り込むことにより,pinsを用いた。
まず、Navier$\unicode{x2013}$Skan境界層を解くことで、ラミナーフローに対するNavier$\unicode{x2013}$Stokes方程式を解くためのPINNの適用性を示す。
次に,非圧力勾配境界層,非圧力勾配境界層,およびNACA4412翼と周期的な丘上の乱流の4つの流れのシミュレーションにPINNを適用した。
その結果, 圧力勾配が強い層流に対するPINNの優れた適用性を示し, 1%以下の誤差で予測できることがわかった。
乱流については,レイノルズ応力成分においてもシミュレーション結果の精度が極めて良好である。
関連論文リスト
- Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - Learning solutions of parametric Navier-Stokes with physics-informed
neural networks [0.3989223013441816]
パラメトリックナビエ・ストークス方程式(NSE)の解関数の学習にPIN(Palformed-Informed Neural Networks)を利用する。
パラメータのパラメータを座標とともにPINの入力とみなし、パラメータのインスタンスに対するパラメトリックPDESの数値解に基づいてPINを訓練する。
提案手法は, 解関数を学習するPINNモデルを最適化し, 流量予測が質量・運動量の保存則と一致していることを確認する。
論文 参考訳(メタデータ) (2024-02-05T16:19:53Z) - Enhancing Data-Assimilation in CFD using Graph Neural Networks [0.0]
本稿では,グラフニューラルネットワーク(GNN)モデルによる随伴最適化に基づく,流体力学に応用されたデータ同化のための新しい機械学習手法を提案する。
我々は,有限要素法(FEM)の解法に基づく直接数値シミュレーションを用いて,GNNモデルと解法の間の2次元のインターフェースにより,GNNの予測をFEM解析の処理後ステップに組み込むことができることを示す。
論文 参考訳(メタデータ) (2023-11-29T19:11:40Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
大規模偏微分方程式の解演算子を学習するために,幾何インフォームド・ニューラル演算子(GINO)を提案する。
我々はGINOを訓練し、わずか500点のデータポイントで車両表面の圧力を予測することに成功した。
論文 参考訳(メタデータ) (2023-09-01T16:59:21Z) - RANS-PINN based Simulation Surrogates for Predicting Turbulent Flows [3.1861308132183384]
我々は,高レイノルズ数乱流状態における流れ場を予測するために,改良されたPINNフレームワークであるRANS-PINNを導入する。
乱流によってもたらされるさらなる複雑さを考慮するため、RANS-PINNはレイノルズ平均ナヴィエ・ストークス(RANS)の定式化に基づく2方程式渦粘性モデルを採用している。
論文 参考訳(メタデータ) (2023-06-09T16:55:49Z) - Predictive Limitations of Physics-Informed Neural Networks in Vortex
Shedding [0.0]
2Dシリンダーのまわりの流れを見て、データのないPINNは渦の沈みを予測できないことに気付きました。
データ駆動型PINNは、トレーニングデータが利用可能である間のみ渦シーディングを表示するが、データフローが停止したときに定常状態のソリューションに戻す。
複素平面上のクープマン固有値の分布は、PINNが数値的に分散し、拡散することを示唆している。
論文 参考訳(メタデータ) (2023-05-31T22:59:52Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Deep Random Vortex Method for Simulation and Inference of Navier-Stokes
Equations [69.5454078868963]
ナビエ・ストークス方程式(Navier-Stokes equation)は、液体や空気などの流体の運動を記述する重要な偏微分方程式である。
AI技術の発展に伴い、非圧縮性ナビエ・ストークス方程式によって支配される流体力学をシミュレーションし、推論するために、ディープニューラルネットワークを統合するためにいくつかのアプローチが設計された。
本研究では,ニューラルネットワークとNavier-Stokes方程式に相当するランダム渦力学系を組み合わせたemphDeep Random Vortex Method (DRVM)を提案する。
論文 参考訳(メタデータ) (2022-06-20T04:58:09Z) - Learning to Solve PDE-constrained Inverse Problems with Graph Networks [51.89325993156204]
科学と工学にまたがる多くの応用分野において、偏微分方程式(PDE)によって定義される制約で逆問題を解決することに興味がある。
ここでは、これらのPDE制約された逆問題を解決するために、GNNを探索する。
GNNを用いて計算速度を最大90倍に向上させる。
論文 参考訳(メタデータ) (2022-06-01T18:48:01Z) - Toward Trainability of Deep Quantum Neural Networks [87.04438831673063]
ランダムな構造を持つ量子ニューラルネットワーク(QNN)は、回路深さと量子ビット数が増加するにつれて指数関数的に減少する勾配のため、トレーニング性に乏しい。
理論的保証のある深部QNNに対して、消滅する勾配問題に対する最初の実現可能な解決策を提供する。
論文 参考訳(メタデータ) (2021-12-30T10:27:08Z) - Physics-Informed Neural Network Method for Solving One-Dimensional
Advection Equation Using PyTorch [0.0]
PINNのアプローチは、最適化の強い制約としてPDEを尊重しながらニューラルネットワークのトレーニングを可能にします。
標準的な小規模循環シミュレーションでは、従来のアプローチは乱流拡散モデルの効果とほぼ同じ大きさの擬似拡散効果を組み込むことが示されている。
テストされた全てのスキームのうち、ピンズ近似のみが結果を正確に予測した。
論文 参考訳(メタデータ) (2021-03-15T05:39:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。