論文の概要: Separable Physics-Informed Neural Networks for the solution of
elasticity problems
- arxiv url: http://arxiv.org/abs/2401.13486v1
- Date: Wed, 24 Jan 2024 14:34:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-25 14:32:36.181352
- Title: Separable Physics-Informed Neural Networks for the solution of
elasticity problems
- Title(参考訳): 弾性問題の解のための分離型物理情報ニューラルネットワーク
- Authors: Vasiliy A. Es'kin, Danil V. Davydov, Julia V. Gur'eva, Alexey O.
Malkhanov, Mikhail E. Smorkalov
- Abstract要約: 深部エネルギー法(DEM)と連動して、分離可能な物理情報ニューラルネットワーク(SPINN)に基づく弾性問題の解法を提案する。
数値実験により、この手法はバニラ物理情報ニューラルネットワーク(PINN)やSPINNよりもはるかに高い収束率と精度を有することが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A method for solving elasticity problems based on separable physics-informed
neural networks (SPINN) in conjunction with the deep energy method (DEM) is
presented. Numerical experiments have been carried out for a number of problems
showing that this method has a significantly higher convergence rate and
accuracy than the vanilla physics-informed neural networks (PINN) and even
SPINN based on a system of partial differential equations (PDEs). In addition,
using the SPINN in the framework of DEM approach it is possible to solve
problems of the linear theory of elasticity on complex geometries, which is
unachievable with the help of PINNs in frames of partial differential
equations. Considered problems are very close to the industrial problems in
terms of geometry, loading, and material parameters.
- Abstract(参考訳): 深部エネルギー法(DEM)と連動して、分離可能な物理情報ニューラルネットワーク(SPINN)に基づく弾性問題の解法を提案する。
この手法は, 偏微分方程式系(PDE)に基づくバニラ物理インフォームドニューラルネットワーク(PINN)やSPINNよりも, はるかに高い収束率と精度を有することを示す多くの問題に対して, 数値解析実験が実施されている。
さらに、DEMアプローチの枠組みにおいてSPINNを用いることで、偏微分方程式のフレームにおけるPINNの助けを借りて達成できない複素幾何学上の線形弾性理論の問題を解くことができる。
考慮された問題は、幾何学、荷重、材料パラメータの点で、産業問題と非常に近い。
関連論文リスト
- Physics-aware deep learning framework for linear elasticity [0.0]
本稿では,線形連続弾性問題に対する効率的で堅牢なデータ駆動型ディープラーニング(DL)計算フレームワークを提案する。
フィールド変数の正確な表現のために,多目的損失関数を提案する。
弾性に対するAirimaty解やKirchhoff-Loveプレート問題を含むいくつかのベンチマーク問題を解く。
論文 参考訳(メタデータ) (2023-02-19T20:33:32Z) - RBF-MGN:Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network [4.425915683879297]
グラフニューラルネットワーク(GNN)とラジアル基底関数有限差分(RBF-FD)に基づく新しいフレームワークを提案する。
RBF-FDはモデルトレーニングを導くために微分方程式の高精度差分形式を構築するために用いられる。
提案アルゴリズムの一般化可能性,精度,効率性を,異なるPDEパラメータで説明する。
論文 参考訳(メタデータ) (2022-12-06T10:08:02Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Semi-analytic PINN methods for singularly perturbed boundary value
problems [0.8594140167290099]
本稿では,新しい半解析的物理情報ニューラルネットワーク(PINN)を提案し,特異な摂動境界値問題の解法を提案する。
PINNは、偏微分方程式の数値解を見つけるための有望な視点を提供する科学機械学習フレームワークである。
論文 参考訳(メタデータ) (2022-08-19T04:26:40Z) - A mixed formulation for physics-informed neural networks as a potential
solver for engineering problems in heterogeneous domains: comparison with
finite element method [0.0]
物理インフォームドニューラルネットワーク(PINN)は、与えられた境界値問題の解を見つけることができる。
工学的問題における既存のPINNの性能を高めるために,有限要素法(FEM)からいくつかのアイデアを取り入れた。
論文 参考訳(メタデータ) (2022-06-27T08:18:08Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - A Physics Informed Neural Network Approach to Solution and
Identification of Biharmonic Equations of Elasticity [0.0]
本研究では,エアリーストレス関数とフーリエ級数を組み合わせた物理情報ニューラルネットワーク(PINN)の適用について検討する。
両高調波PDEに対するPINNソリューションの精度は, エアリー応力関数による特徴空間の強化により著しく向上することがわかった。
論文 参考訳(メタデータ) (2021-08-16T17:19:50Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。