論文の概要: An efficient wavelet-based physics-informed neural networks for singularly perturbed problems
- arxiv url: http://arxiv.org/abs/2409.11847v1
- Date: Wed, 18 Sep 2024 10:01:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 18:23:34.767313
- Title: An efficient wavelet-based physics-informed neural networks for singularly perturbed problems
- Title(参考訳): 単一摂動問題に対する効率的なウェーブレットに基づく物理インフォームドニューラルネットワーク
- Authors: Himanshu Pandey, Anshima Singh, Ratikanta Behera,
- Abstract要約: 物理インフォームドニューラルネットワーク(英: Physics-informed Neural Network、PINN)は、物理学を微分方程式として利用するディープラーニングモデルのクラスである。
単一摂動微分方程式を解くために,効率的なウェーブレットベースPINNモデルを提案する。
このアーキテクチャにより、トレーニングプロセスはウェーブレット空間内のソリューションを探索することができ、プロセスがより速く、より正確になる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs) are a class of deep learning models that utilize physics as differential equations to address complex problems, including ones that may involve limited data availability. However, tackling solutions of differential equations with oscillations or singular perturbations and shock-like structures becomes challenging for PINNs. Considering these challenges, we designed an efficient wavelet-based PINNs (W-PINNs) model to solve singularly perturbed differential equations. Here, we represent the solution in wavelet space using a family of smooth-compactly supported wavelets. This framework represents the solution of a differential equation with significantly fewer degrees of freedom while still retaining in capturing, identifying, and analyzing the local structure of complex physical phenomena. The architecture allows the training process to search for a solution within wavelet space, making the process faster and more accurate. The proposed model does not rely on automatic differentiations for derivatives involved in differential equations and does not require any prior information regarding the behavior of the solution, such as the location of abrupt features. Thus, through a strategic fusion of wavelets with PINNs, W-PINNs excel at capturing localized nonlinear information, making them well-suited for problems showing abrupt behavior in certain regions, such as singularly perturbed problems. The efficiency and accuracy of the proposed neural network model are demonstrated in various test problems, i.e., highly singularly perturbed nonlinear differential equations, the FitzHugh-Nagumo (FHN), and Predator-prey interaction models. The proposed design model exhibits impressive comparisons with traditional PINNs and the recently developed wavelet-based PINNs, which use wavelets as an activation function for solving nonlinear differential equations.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(英: Physics-informed Neural Network, PINN)は、物理を微分方程式として利用して複雑な問題に対処する深層学習モデルである。
しかし、振動や特異摂動や衝撃のような構造を持つ微分方程式の解に取り組むことは、PINNにとって困難である。
これらの課題を考慮し、単一摂動微分方程式を解くために、効率的なウェーブレットベースPINN(W-PINN)モデルを設計した。
ここでは、スムーズでコンパクトに支持されたウェーブレットの族を用いて、ウェーブレット空間における解を表す。
この枠組みは、複雑な物理現象の局所構造を捕捉、同定、解析し続けながら、はるかに少ない自由度を持つ微分方程式の解を表す。
このアーキテクチャにより、トレーニングプロセスはウェーブレット空間内のソリューションを探索することができ、プロセスがより速く、より正確になる。
提案モデルは微分方程式に係わる微分の微分に依存せず、急激な特徴の位置などの解の挙動に関する事前情報を必要としない。
したがって、PINNとウェーブレットを戦略的に融合させることにより、W-PINNは局所的な非線形情報を取得するのに優れ、特異摂動問題など特定の領域における急激な振る舞いを示す問題に適している。
提案したニューラルネットワークモデルの効率性と精度は、高特異な摂動非線形微分方程式、FitzHugh-Nagumo (FHN)、Predator-prey相互作用モデルなど、様々なテスト問題で実証される。
提案した設計モデルは, 非線形微分方程式の解法としてウェーブレットを活性化関数として用いた, 従来のPINNと最近開発されたウェーブレットベースPINNとの印象的な比較を示す。
関連論文リスト
- Discovery of Quasi-Integrable Equations from traveling-wave data using the Physics-Informed Neural Networks [0.0]
PINNは2+1次元非線形偏微分方程式の渦解の研究に用いられる。
保存法則(cPINN)、初期プロファイルの変形、および識別の解像度を改善するための摩擦アプローチを考察する。
論文 参考訳(メタデータ) (2024-10-23T08:29:13Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Semi-analytic PINN methods for singularly perturbed boundary value
problems [0.8594140167290099]
本稿では,新しい半解析的物理情報ニューラルネットワーク(PINN)を提案し,特異な摂動境界値問題の解法を提案する。
PINNは、偏微分方程式の数値解を見つけるための有望な視点を提供する科学機械学習フレームワークである。
論文 参考訳(メタデータ) (2022-08-19T04:26:40Z) - Wave simulation in non-smooth media by PINN with quadratic neural
network and PML condition [2.7651063843287718]
最近提案された物理インフォームドニューラルネットワーク(PINN)は、幅広い偏微分方程式(PDE)を解くことに成功している。
本稿では、波動方程式の代わりにPINNを用いて周波数領域における音響および粘性音響散乱波動方程式を解き、震源の摂動を除去する。
PMLと2次ニューロンは、その効果と減衰を改善できることを示し、この改善の理由を議論する。
論文 参考訳(メタデータ) (2022-08-16T13:29:01Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Physics-informed attention-based neural network for solving non-linear
partial differential equations [6.103365780339364]
物理情報ニューラルネットワーク(PINN)は、物理プロセスのモデリングにおいて大幅な改善を実現しました。
PINNは単純なアーキテクチャに基づいており、ネットワークパラメータを最適化することで複雑な物理システムの振る舞いを学習し、基礎となるPDEの残余を最小限に抑える。
ここでは、非線形PDEの複雑な振る舞いを学ぶのに、どのネットワークアーキテクチャが最適かという問題に対処する。
論文 参考訳(メタデータ) (2021-05-17T14:29:08Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - A nonlocal physics-informed deep learning framework using the
peridynamic differential operator [0.0]
本研究では,長距離相互作用を組み込んだ数値計算法であるPeridynamic Differential Operator (PDDO) を用いた非局所PINN手法を開発した。
PDDO関数はニューラルネットワークアーキテクチャに容易に組み込むことができるため、非局所性は現代のディープラーニングアルゴリズムの性能を低下させることはない。
本稿では,非局所PINNの解法精度とパラメータ推定の両方において,局所PINNに対して優れた振る舞いを示す。
論文 参考訳(メタデータ) (2020-05-31T06:26:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。