論文の概要: Non-linear Independent Dual System (NIDS) for Discretization-independent
Surrogate Modeling over Complex Geometries
- arxiv url: http://arxiv.org/abs/2109.07018v1
- Date: Tue, 14 Sep 2021 23:38:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-16 14:50:23.213541
- Title: Non-linear Independent Dual System (NIDS) for Discretization-independent
Surrogate Modeling over Complex Geometries
- Title(参考訳): 複素測地上の離散化独立サーロゲートモデリングのための非線形独立デュアルシステム(NIDS)
- Authors: James Duvall, Karthik Duraisamy, Shaowu Pan
- Abstract要約: 非線形独立双対系(Non-linear independent dual system、NIDS)は、PDEソリューションの離散化独立で連続的な表現のための深層学習サロゲートモデルである。
NIDSは複雑な可変ジオメトリとメッシュトポロジを持つドメインの予測に使用できる。
テストケースには、複雑な幾何学とデータ不足を伴う車両の問題が含まれている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Numerical solution of partial differential equations (PDEs) require expensive
simulations, limiting their application in design optimization routines,
model-based control, or solution of large-scale inverse problems. Existing
Convolutional Neural Network-based frameworks for surrogate modeling require
lossy pixelization and data-preprocessing, which is not suitable for realistic
engineering applications. Therefore, we propose non-linear independent dual
system (NIDS), which is a deep learning surrogate model for
discretization-independent, continuous representation of PDE solutions, and can
be used for prediction over domains with complex, variable geometries and mesh
topologies. NIDS leverages implicit neural representations to develop a
non-linear mapping between problem parameters and spatial coordinates to state
predictions by combining evaluations of a case-wise parameter network and a
point-wise spatial network in a linear output layer. The input features of the
spatial network include physical coordinates augmented by a minimum distance
function evaluation to implicitly encode the problem geometry. The form of the
overall output layer induces a dual system, where each term in the map is
non-linear and independent. Further, we propose a minimum distance
function-driven weighted sum of NIDS models using a shared parameter network to
enforce boundary conditions by construction under certain restrictions. The
framework is applied to predict solutions around complex,
parametrically-defined geometries on non-parametrically-defined meshes with
solution obtained many orders of magnitude faster than the full order models.
Test cases include a vehicle aerodynamics problem with complex geometry and
data scarcity, enabled by a training method in which more cases are gradually
added as training progresses.
- Abstract(参考訳): 偏微分方程式(PDE)の数値解は高価なシミュレーションを必要とし、設計最適化ルーチン、モデルベース制御、大規模逆問題解への応用を制限する。
既存の畳み込みニューラルネットワークに基づくサロゲートモデリングフレームワークは、現実的なエンジニアリングアプリケーションには適さない、ピクセル化とデータ前処理を必要とする。
そこで我々は,PDE解の離散化に依存しない連続表現のための深層学習サロゲートモデルである非線形独立二重系(NIDS)を提案する。
NIDSは暗黙の神経表現を活用し、線形出力層におけるケースワイドパラメータネットワークとポイントワイド空間ネットワークの評価を組み合わせることで、問題パラメータと空間座標間の非線形マッピングを状態予測に展開する。
空間ネットワークの入力特徴は、問題の幾何学を暗黙的に符号化する最小距離関数評価によって強化された物理座標を含む。
全体出力層の形式は双対系を誘導し、写像内の各項は非線形で独立である。
さらに,共有パラメータネットワークを用いたNIDSモデルの最小距離関数駆動重み付け和を提案し,一定の制約の下で構成によって境界条件を強制する。
このフレームワークは、非パラメトリックで定義されたメッシュ上の複雑でパラメトリックで定義された幾何学の解を予測するために応用される。
テストケースには、複雑な形状とデータ不足を伴う車両の空力問題が含まれ、トレーニングの進行とともに、より多くのケースが徐々に追加されるトレーニング方法によって実現される。
関連論文リスト
- Shape-informed surrogate models based on signed distance function domain encoding [8.052704959617207]
パラメータ化偏微分方程式(PDE)の解を近似する代理モデルを構築するための非侵入的手法を提案する。
我々のアプローチは2つのニューラルネットワーク(NN)の組み合わせに基づいている。
論文 参考訳(メタデータ) (2024-09-19T01:47:04Z) - Operator Learning with Neural Fields: Tackling PDEs on General
Geometries [15.65577053925333]
偏微分方程式を解くための機械学習アプローチは、関数空間間の学習写像を必要とする。
新しいコーラル法は、いくつかの一般的な制約に基づいてPDEのための座標ベースのネットワークを利用する。
論文 参考訳(メタデータ) (2023-06-12T17:52:39Z) - A graph convolutional autoencoder approach to model order reduction for
parametrized PDEs [0.8192907805418583]
本稿では,グラフ畳み込みオートエンコーダ(GCA-ROM)に基づく非線形モデルオーダー削減のためのフレームワークを提案する。
我々は、GNNを利用して、圧縮された多様体を符号化し、パラメタライズされたPDEの高速な評価を可能にする、非侵襲的でデータ駆動の非線形還元手法を開発した。
論文 参考訳(メタデータ) (2023-05-15T12:01:22Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - Neural Implicit Flow: a mesh-agnostic dimensionality reduction paradigm
of spatio-temporal data [4.996878640124385]
大規模・パラメトリック・時空間データに対してメッシュに依存しない低ランクな表現を可能にする,NIF(Neural Implicit Flow)と呼ばれる汎用フレームワークを提案する。
NIFは、2つの修正された多層パーセプトロン(i)ShapeNetで構成されており、これは空間的複雑さ(i)ShapeNetを分離し、表現し、パラメトリック依存関係、時間、センサー測定を含む他の入力測定を考慮に入れている。
パラメトリックサロゲートモデリングにおけるNIFの有用性を実証し、複雑な時空間力学の解釈可能な表現と圧縮を可能にし、多空間時空間の効率的な一般化を実現し、スパースの性能を改善した。
論文 参考訳(メタデータ) (2022-04-07T05:02:58Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
本稿では,この目的関数の定式化方法が,PINNアプローチにおける厳密な制約の源であることを示す。
本稿では,逆問題と前方問題の両方に対処可能な多目的フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-30T05:55:35Z) - Reinforcement Learning for Adaptive Mesh Refinement [63.7867809197671]
マルコフ決定過程としてのAMRの新規な定式化を提案し,シミュレーションから直接改良政策を訓練するために深部強化学習を適用した。
これらのポリシーアーキテクチャのモデルサイズはメッシュサイズに依存しないため、任意に大きく複雑なシミュレーションにスケールします。
論文 参考訳(メタデータ) (2021-03-01T22:55:48Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。