論文の概要: Extracting stochastic dynamical systems with $\alpha$-stable L\'evy
noise from data
- arxiv url: http://arxiv.org/abs/2109.14881v1
- Date: Thu, 30 Sep 2021 06:57:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-01 14:58:37.254376
- Title: Extracting stochastic dynamical systems with $\alpha$-stable L\'evy
noise from data
- Title(参考訳): データからの$\alpha$-stable L\'evy雑音による確率力学系抽出
- Authors: Yang Li, Yubin Lu, Shengyuan Xu, Jinqiao Duan
- Abstract要約: 本稿では,短時間のバーストデータから$$alpha$-stable L'evyノイズを持つシステムを抽出するデータ駆動方式を提案する。
より具体的には、最初にL'evyジャンプ測度と雑音強度を推定する。
次に,非局所クラマース・モヤル式と正規化流を組み合わせることでドリフト係数を近似する。
- 参考スコア(独自算出の注目度): 14.230182518492311
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid increase of valuable observational, experimental and simulated
data for complex systems, much efforts have been devoted to identifying
governing laws underlying the evolution of these systems. Despite the wide
applications of non-Gaussian fluctuations in numerous physical phenomena, the
data-driven approaches to extract stochastic dynamical systems with
(non-Gaussian) L\'evy noise are relatively few so far. In this work, we propose
a data-driven method to extract stochastic dynamical systems with
$\alpha$-stable L\'evy noise from short burst data based on the properties of
$\alpha$-stable distributions. More specifically, we first estimate the L\'evy
jump measure and noise intensity via computing mean and variance of the
amplitude of the increment of the sample paths. Then we approximate the drift
coefficient by combining nonlocal Kramers-Moyal formulas with normalizing
flows. Numerical experiments on one- and two-dimensional prototypical examples
illustrate the accuracy and effectiveness of our method. This approach will
become an effective scientific tool in discovering stochastic governing laws of
complex phenomena and understanding dynamical behaviors under non-Gaussian
fluctuations.
- Abstract(参考訳): 複雑なシステムに対する価値ある観測、実験、シミュレーションデータの増加に伴い、これらのシステムの進化の根底にある法則の特定に多くの努力が注がれている。
多くの物理現象における非ガウシアンゆらぎの幅広い応用にもかかわらず、(ガウシアンでない)l\'evyノイズを持つ確率力学系を抽出するデータ駆動アプローチは、今のところ比較的少ない。
本研究では,$\alpha$-stable分布の性質に基づいて,短いバーストデータから$\alpha$-stable l\'evyノイズを持つ確率力学系を抽出するデータ駆動方式を提案する。
より具体的には、サンプルパスのインクリメントの振幅の平均と分散を計算することにより、まずl\'evy jump測度とノイズ強度を推定する。
次に,非局所クラマース・モヤル公式と正規化流れを組み合わせることでドリフト係数を近似する。
1次元および2次元の原型例に対する数値実験は,本手法の精度と有効性を示す。
このアプローチは、複素現象の確率的支配則を発見し、非ガウス変動の下での動的挙動を理解するための効果的な科学的ツールとなる。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Weak Collocation Regression for Inferring Stochastic Dynamics with
L\'{e}vy Noise [8.15076267771005]
本稿では,L'evyノイズを伴う力学を抽出するためのFokker-Planck(FP)方程式の弱い形式を提案する。
本手法は,多次元問題においても混合雑音を同時に識別することができる。
論文 参考訳(メタデータ) (2024-03-13T06:54:38Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - An end-to-end deep learning approach for extracting stochastic dynamical
systems with $\alpha$-stable L\'evy noise [5.815325960286111]
本研究では,ランダムなペアワイズデータのみから,$alpha$-stable Levyノイズによって駆動される力学系を同定する。
我々の革新は、(1)レヴィ誘導雑音のドリフト項と拡散項の両方を全ての値に対して$alpha$で学習するためのディープラーニングアプローチを設計すること、(2)小さな雑音強度を制限せずに複雑な乗法ノイズを学習すること、(3)システム同定のためのエンドツーエンドの完全なフレームワークを提案することである。
論文 参考訳(メタデータ) (2022-01-31T10:51:25Z) - Extracting Stochastic Governing Laws by Nonlocal Kramers-Moyal Formulas [3.8325907381729496]
我々は、(ガウス)ブラウン運動と(非ガウス)レヴィ運動の両方を用いて、規制法則を抽出するデータ駆動アプローチを提案する。
このアプローチがL'evy運動を伴う微分方程式を学習できることを実証する。
論文 参考訳(メタデータ) (2021-08-28T04:56:51Z) - Extracting Governing Laws from Sample Path Data of Non-Gaussian
Stochastic Dynamical Systems [4.527698247742305]
我々は、利用可能なデータから非ガウスL'evy雑音の方程式を推定し、動的挙動を合理的に予測する。
理論的枠組みを確立し、非対称なL'evyジャンプ測度、ドリフト、拡散を計算する数値アルゴリズムを設計する。
この方法は、利用可能なデータセットから規制法則を発見し、複雑なランダム現象のメカニズムを理解するのに有効なツールとなる。
論文 参考訳(メタデータ) (2021-07-21T14:50:36Z) - Asymmetric Heavy Tails and Implicit Bias in Gaussian Noise Injections [73.95786440318369]
我々は、勾配降下(SGD)のダイナミクスに対する注射ノイズの影響であるGNIsのいわゆる暗黙効果に焦点を当てています。
この効果は勾配更新に非対称な重尾ノイズを誘発することを示す。
そして、GNIが暗黙のバイアスを引き起こすことを正式に証明し、これは尾の重みと非対称性のレベルによって異なる。
論文 参考訳(メタデータ) (2021-02-13T21:28:09Z) - A Data-Driven Approach for Discovering Stochastic Dynamical Systems with
Non-Gaussian Levy Noise [5.17900889163564]
ノイズの多いデータセットから規制法則を抽出する新しいデータ駆動手法を開発した。
まず, ドリフト係数, 拡散係数, ジャンプ測度を表現し, 実現可能な理論的枠組みを確立する。
そこで我々は, ドリフト, 拡散係数, ジャンプ測度を計算する数値アルゴリズムを設計し, ガウス雑音および非ガウス雑音による支配方程式を抽出する。
論文 参考訳(メタデータ) (2020-05-07T21:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。