論文の概要: Efficient estimates of optimal transport via low-dimensional embeddings
- arxiv url: http://arxiv.org/abs/2111.04838v1
- Date: Mon, 8 Nov 2021 21:22:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-10 14:50:24.980038
- Title: Efficient estimates of optimal transport via low-dimensional embeddings
- Title(参考訳): 低次元埋め込みによる最適輸送の効率的な推定
- Authors: Patric M. Fulop, Vincent Danos
- Abstract要約: 最適輸送距離(OT)は、確率分布を比較する方法として機械学習の最近の研究で広く使われている。
Patyらによる最近の研究は、データの低ランクプロジェクションを使用してOTを計算することで、このコスト削減を特に目指している。
このアプローチを拡張し、1-Lipschitz であれば、より一般的な写像の族を用いることで、OT 距離を近似できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimal transport distances (OT) have been widely used in recent work in
Machine Learning as ways to compare probability distributions. These are costly
to compute when the data lives in high dimension. Recent work by Paty et al.,
2019, aims specifically at reducing this cost by computing OT using low-rank
projections of the data (seen as discrete measures). We extend this approach
and show that one can approximate OT distances by using more general families
of maps provided they are 1-Lipschitz. The best estimate is obtained by
maximising OT over the given family. As OT calculations are done after mapping
data to a lower dimensional space, our method scales well with the original
data dimension. We demonstrate the idea with neural networks.
- Abstract(参考訳): 近年,確率分布を比較する手段として,最適輸送距離(OT)が機械学習において広く用いられている。
これらは、データが高次元にある場合の計算に費用がかかる。
Patyらによる最近の研究は、データの低ランクなプロジェクションを使用してOTを計算することで、このコスト削減を特に目指している。
このアプローチを拡張し、1-Lipschitz であれば、より一般的な写像の族を用いて OT 距離を近似できることを示す。
最適な見積もりは、与えられた家族に対してOTを最大化することで得られる。
ot計算はデータを低次元空間にマッピングした後に行われるので,本手法は元のデータ次元とよく合致する。
ニューラルネットワークでそのアイデアを実証する。
関連論文リスト
- Semi-Discrete Optimal Transport: Nearly Minimax Estimation With Stochastic Gradient Descent and Adaptive Entropic Regularization [38.67914746910537]
我々は,ラゲールセル推定と密度支持推定の類似性を用いて,OTマップに対して$mathcalO(t-1)$の低いバウンダリレートを証明した。
所望の速さをほぼ達成するために,サンプル数に応じて減少するエントロピー正規化スキームを設計する。
論文 参考訳(メタデータ) (2024-05-23T11:46:03Z) - A Specialized Semismooth Newton Method for Kernel-Based Optimal
Transport [92.96250725599958]
カーネルベース最適輸送(OT)推定器は、サンプルからOT問題に対処するための代替的機能的推定手順を提供する。
SSN法は, 標準正規性条件下でのグローバル収束率$O (1/sqrtk)$, 局所二次収束率を達成できることを示す。
論文 参考訳(メタデータ) (2023-10-21T18:48:45Z) - Unbalanced Optimal Transport meets Sliced-Wasserstein [11.44982599214965]
本研究では、不均衡なOTをスライスするアイデアに基づく2つの新しい損失関数を提案し、その位相と統計的性質について検討する。
結果の方法論がモジュール化され、それに関連する作業が包含され、拡張されることが示されます。
論文 参考訳(メタデータ) (2023-06-12T15:15:00Z) - Linearized Wasserstein dimensionality reduction with approximation
guarantees [65.16758672591365]
LOT Wassmap は、ワーッサーシュタイン空間の低次元構造を明らかにするための計算可能なアルゴリズムである。
我々は,LOT Wassmapが正しい埋め込みを実現し,サンプルサイズの増加とともに品質が向上することを示す。
また、LOT Wassmapがペア距離計算に依存するアルゴリズムと比較して計算コストを大幅に削減することを示す。
論文 参考訳(メタデータ) (2023-02-14T22:12:16Z) - Robust computation of optimal transport by $\beta$-potential
regularization [79.24513412588745]
最適輸送(OT)は、確率分布間の差を測定する機械学習分野で広く使われているツールである。
我々は、いわゆる$beta$-divergenceに付随するベータポテンシャル項でOTを正規化することを提案する。
提案アルゴリズムで計算した輸送行列は,外乱が存在する場合でも確率分布を頑健に推定するのに役立つことを実験的に実証した。
論文 参考訳(メタデータ) (2022-12-26T18:37:28Z) - Sliced Optimal Partial Transport [13.595857406165292]
1次元の2つの非負測度間の最適部分輸送問題を計算するための効率的なアルゴリズムを提案する。
種々の数値実験において,スライス OPT 方式の計算と精度の利点を実証した。
論文 参考訳(メタデータ) (2022-12-15T18:55:23Z) - Unbalanced Optimal Transport, from Theory to Numerics [0.0]
我々は、不均衡なOT、エントロピー正則化、Gromov-Wasserstein (GW) が、データサイエンスの効率的な幾何学的損失関数にOTを変換するために、ハンドインで機能すると主張している。
このレビューの主な動機は、不均衡なOT、エントロピー正則化、GWがいかに協力してOTをデータ科学の効率的な幾何学的損失関数に変えるかを説明することである。
論文 参考訳(メタデータ) (2022-11-16T09:02:52Z) - InfoOT: Information Maximizing Optimal Transport [58.72713603244467]
InfoOTは最適な輸送の情報理論の拡張である。
幾何学的距離を最小化しながら、ドメイン間の相互情報を最大化する。
この定式化は、外れ値に対して堅牢な新しい射影法をもたらし、目に見えないサンプルに一般化する。
論文 参考訳(メタデータ) (2022-10-06T18:55:41Z) - Near-optimal estimation of smooth transport maps with kernel
sums-of-squares [81.02564078640275]
滑らかな条件下では、2つの分布の間の正方形ワッサーシュタイン距離は、魅力的な統計的誤差上界で効率的に計算できる。
生成的モデリングのような応用への関心の対象は、基礎となる最適輸送写像である。
そこで本研究では,地図上の統計的誤差であるL2$が,既存のミニマックス下限値とほぼ一致し,スムーズな地図推定が可能となる最初のトラクタブルアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-03T13:45:36Z) - Generative Modeling with Optimal Transport Maps [83.59805931374197]
OT(Optimal Transport)は、大規模な生成モデリングタスクのための強力なツールとなっている。
OTマップ自体が生成モデルとして利用でき、同等の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-10-06T18:17:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。