論文の概要: Parallel Physics-Informed Neural Networks with Bidirectional Balance
- arxiv url: http://arxiv.org/abs/2111.05641v1
- Date: Wed, 10 Nov 2021 11:13:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-11 18:15:39.622878
- Title: Parallel Physics-Informed Neural Networks with Bidirectional Balance
- Title(参考訳): 双方向バランスを持つ並列物理形ニューラルネットワーク
- Authors: Yuhao Huang
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は工学における様々な偏微分方程式(PDE)の解法として広く用いられている。
ここでは, 多層構造における熱伝達問題を典型例として挙げる。
本稿では,双方向バランスを持つ並列物理インフォームニューラルネットワークを提案する。
提案手法は, PINNを解けない問題にし, 優れた解法精度を実現する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As an emerging technology in deep learning, physics-informed neural networks
(PINNs) have been widely used to solve various partial differential equations
(PDEs) in engineering. However, PDEs based on practical considerations contain
multiple physical quantities and complex initial boundary conditions, thus
PINNs often returns incorrect results. Here we take heat transfer problem in
multilayer fabrics as a typical example. It is coupled by multiple temperature
fields with strong correlation, and the values of variables are extremely
unbalanced among different dimensions. We clarify the potential difficulties of
solving such problems by classic PINNs, and propose a parallel physics-informed
neural networks with bidirectional balance. In detail, our parallel solving
framework synchronously fits coupled equations through several multilayer
perceptions. Moreover, we design two modules to balance forward process of data
and back-propagation process of loss gradient. This bidirectional balance not
only enables the whole network to converge stably, but also helps to fully
learn various physical conditions in PDEs. We provide a series of ablation
experiments to verify the effectiveness of the proposed methods. The results
show that our approach makes the PINNs unsolvable problem solvable, and
achieves excellent solving accuracy.
- Abstract(参考訳): ディープラーニングの新たな技術として、物理情報ニューラルネットワーク(PINN)は工学における様々な偏微分方程式(PDE)の解法として広く用いられている。
しかし、実用的考察に基づくPDEは、複数の物理量と複雑な初期境界条件を含むため、PINNは間違った結果を返すことが多い。
ここでは, 多層布の伝熱問題を典型例とする。
強い相関を持つ複数の温度場によって結合され、変数の値は異なる次元間で非常に不均衡である。
古典ピンで解くことの潜在的な困難を解明し,双方向バランスを持つ並列物理形ニューラルネットワークを提案する。
詳しくは、並列解法フレームワークは、複数の多層知覚を通じて結合方程式に同期的に適合する。
さらに,データのフォワードプロセスと損失勾配のバックプロパゲーションプロセスのバランスをとるためのモジュールを2つ設計した。
この双方向バランスは、ネットワーク全体を安定的に収束させるだけでなく、PDEの様々な物理的条件を完全に学習するのに役立つ。
提案手法の有効性を検証するため,一連のアブレーション実験を行った。
その結果,本手法は解決不能な問題を解決可能とし,解決精度に優れることがわかった。
関連論文リスト
- A Physics Informed Neural Network (PINN) Methodology for Coupled Moving Boundary PDEs [0.0]
物理インフォームドニューラルネットワーク(PINN)は、微分方程式(DE)を用いてモデル化された物理問題を解くのに役立つ新しいマルチタスク学習フレームワークである
本稿では、複数の制御パラメータ(エネルギーと種、および複数のインターフェースバランス方程式)を含む結合システムを解決するためのPINNベースのアプローチについて報告する。
論文 参考訳(メタデータ) (2024-09-17T06:00:18Z) - General-Kindred Physics-Informed Neural Network to the Solutions of Singularly Perturbed Differential Equations [11.121415128908566]
我々は,Singular Perturbation Differential Equations(SPDE)の解法として,GKPINN(General-Kindred Physics-Informed Neural Network)を提案する。
この手法は, 境界層の事前知識を方程式から利用し, 境界層を近似するPINNを支援する新しいネットワークを確立する。
GKPINNは,確立したPINN法と比較して,2~4桁の誤差を2~4桁に削減し,大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2024-08-27T02:03:22Z) - iPINNs: Incremental learning for Physics-informed neural networks [66.4795381419701]
物理インフォームドニューラルネットワーク(PINN)は、最近偏微分方程式(PDE)を解く強力なツールとなっている。
本稿では,新しいタスクのパラメータを追加せずに連続的に複数のタスクを学習できるインクリメンタルPINNを提案する。
提案手法は,PDEごとに個別のサブネットワークを作成し,従来のサブネットワークと重なり合うようにすることで,最も単純なPDEから複数のPDEを学習する。
論文 参考訳(メタデータ) (2023-04-10T20:19:20Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
物理インフォームドニューラルネットワーク(PINN)は境界値問題を解決するための新しいツールである。
近年の研究では、多くの工学的問題に対して損失関数を設計する際には、一階微分を使い、強い形式と弱い形式の方程式を組み合わせることにより、はるかに精度が向上することが示されている。
本研究では,多物理問題,特に定常熱力学的に結合した方程式系を解くために混合定式化を適用することを提案する。
論文 参考訳(メタデータ) (2023-02-09T21:56:59Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - A mixed formulation for physics-informed neural networks as a potential
solver for engineering problems in heterogeneous domains: comparison with
finite element method [0.0]
物理インフォームドニューラルネットワーク(PINN)は、与えられた境界値問題の解を見つけることができる。
工学的問題における既存のPINNの性能を高めるために,有限要素法(FEM)からいくつかのアイデアを取り入れた。
論文 参考訳(メタデータ) (2022-06-27T08:18:08Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
我々は、PINNを正しい解に収束させるため、解区間を徐々に拡大することを提案する。
すべてのアンサンブルのメンバーは、観測されたデータの近くで同じ解に収束する。
提案手法は, 得られた解の精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:05:34Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - Physics informed deep learning for computational elastodynamics without
labeled data [13.084113582897965]
ラベル付きデータに頼らずにエラストダイナミックス問題をモデル化するために,混合可変出力を持つ物理インフォームドニューラルネットワーク(PINN)を提案する。
その結果,計算力学応用の文脈におけるPINNの有望性を示す。
論文 参考訳(メタデータ) (2020-06-10T19:05:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。