論文の概要: Why the wavefunction already is an object on spac
- arxiv url: http://arxiv.org/abs/2111.14604v2
- Date: Sun, 11 Feb 2024 20:44:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-14 01:39:33.585796
- Title: Why the wavefunction already is an object on spac
- Title(参考訳): 波動関数が既にスパック上の物体である理由
- Authors: Ovidiu Cristinel Stoica
- Abstract要約: 波動関数は3$次元の空間ではなく3$$次元の構成空間上で定義される。
これは、ウィグナーとバーグマンによって実現された時空等距離の表現による量子粒子の分類に自然に適合する。
すべての量子実験が宇宙で起こることに気付くと、宇宙上の物体である波動関数とともに自然に一貫した解釈ができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since the discovery of quantum mechanics, the fact that the wavefunction is
defined on the $3\mathbf{n}$-dimensional configuration space rather than on the
$3$-dimensional space seemed uncanny to many, including Schr\"odinger, Lorentz,
and Einstein. Even today, this continues to be seen as an important problem in
the foundations of quantum mechanics.
In this article it will be shown that the wavefunction already is a genuine
object on space. While this may seem surprising, the wavefunction has no
qualitatively new features that were not previously encountered in the objects
known from Euclidean geometry and classical physics. This will be shown to be
true also in Felix Klein's Erlangen Program. This fits naturally in the
classification of quantum particles by the representations of the spacetime
isometries realized by Wigner and Bargmann, adding another layer of
confirmation. Once we realize that all quantum experiments take place in space,
they can be interpreted naturally and consistently with the wavefunction being
an object on space.
- Abstract(参考訳): 量子力学の発見以来、波動関数が3.$次元空間ではなく3.$mathbf{n}$-次元構成空間上で定義されるという事実は、シュル・オーディンガー、ローレンツ、アインシュタインなど多くの人に不都合に思われた。
現在でも、これは量子力学の基礎において重要な問題と見なされ続けている。
この記事では、波動関数が既に空間上の真の対象であることを示す。
これは意外に思えるかもしれないが、波動関数はユークリッド幾何学や古典物理学で知られている対象にこれまで遭遇していなかった定性的に新しい特徴を持たない。
Felix Klein氏のErlangen Programでもこれは事実であることが示されている。
これは、ウィグナーとバーグマンによって実現された時空等距離の表現によって量子粒子の分類に自然に適合し、別の確認層を加える。
すべての量子実験が宇宙で起こることに気付くと、宇宙上の物体である波動関数とともに自然に一貫した解釈ができる。
関連論文リスト
- Geometric monotones of violations of quantum realism [89.99666725996975]
量子実在論(Quantum realism)は、量子系における射影測定が、明らかな結果が存在しない場合でも、物理的性質の現実を確立すると述べている。
この枠組みは、古典的および量子的リアリズムの概念の区別に関するニュアンスな見解を提供し、量子システムに固有の文脈性と相補性を強調する。
我々は、トレース距離、ヒルベルト=シュミット距離、シャッテン$p$-距離、ビュール、ヘルリンガー距離を用いた量子リアリズムの幾何学的モノトンを導出した。
論文 参考訳(メタデータ) (2024-12-16T10:22:28Z) - Non-Orientable Quantum Hilbert Space Bundle [0.0]
ハミルトン固有値のヒントに頼る代わりに、ファイバー計量の挙動と量子状態の進化が解析される。
その結果、例外点の周りのヒルベルト空間束は向き付け不能であることが判明した。
論文 参考訳(メタデータ) (2024-12-09T14:58:26Z) - Double-scale theory [77.34726150561087]
二重スケール理論と呼ばれる量子力学の新しい解釈を提案する。
実験室参照フレームに2つの波動関数が同時に存在することに基づく。
外波関数は、量子系の質量の中心を操縦する場に対応する。
内部波動関数はエドウィン・シュル「オーディンガー」によって提唱された解釈に対応する。
論文 参考訳(メタデータ) (2023-05-29T14:28:31Z) - Quantum Physics from Number Theory [0.0]
量子特性は、ヒルベルト状態の明示的なアンサンブルに基づく表現に適用される三角関数の数論的特性から導かれる。
量子力学はそれ自体、$p=infty$におけるこの数論モデルの特異極限である。
論文 参考訳(メタデータ) (2022-09-12T19:04:14Z) - On the Birth of the Universe and Time [62.997667081978825]
理論は、作用関数が波動関数の空間上の作用素として実装される量子表現に基づいている。
宇宙の初期半径の推定法が提案されている。
論文 参考訳(メタデータ) (2022-03-24T11:09:59Z) - Our Fundamental Physical Space: An Essay on the Metaphysics of the Wave
Function [0.0]
3N-Fundamentalistsと3D-Fundamentalistsの議論をレビューし、3つの基準に基づいて評価する。
量子世界における我々の基本的な物理空間は3N次元ではなく3次元である、という見方を、我々の証拠は好んでいると結論づける。
論文 参考訳(メタデータ) (2021-10-22T21:35:52Z) - A realistic model for completing Quantum Mechanics [0.0]
コペンハーゲンでは、物理的対象と実験結果はマクロ言語でのみ記述できる。
測定問題は、主に波動関数の低減プロセスの導入を必要とするため、これらの困難の中心にある。
我々は、測定問題とそれに関連する他の問題をすべて解決できるモデルを構築し、提案する。
論文 参考訳(メタデータ) (2021-04-26T16:41:41Z) - Making a Quantum Universe: Symmetry and Gravity [0.0]
量子宇宙のモデルに関する予備的な結果を概説する。
背景の時空がなければ、この宇宙は自明で静的であることを示す。
宇宙のヒルベルト空間のパラメータ空間で古典時空を同定する。
論文 参考訳(メタデータ) (2020-09-07T21:15:45Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
本稿では、ルイ・ド・ブロイの二重解法理論の仕様に対応する量子力学の解釈的枠組みを提案する。
原理は量子系の進化を2つの波動関数に分解することである。
シュル「オーディンガー」の場合、粒子は拡張され、電子の(内部)波動関数の加群の正方形はその空間における電荷の密度に対応する。
論文 参考訳(メタデータ) (2020-01-13T13:41:24Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
量子ホール系は、基礎となる量子状態の位相構造に根ざしたバルク特性であるホール伝導の量子化によって特徴づけられる。
ここでは, 超低温のジスプロシウム原子を用いた量子ホール系を, 空間次元の2次元形状で実現した。
磁気サブレベルが多数存在すると、バルクおよびエッジの挙動が異なることが示される。
論文 参考訳(メタデータ) (2020-01-06T16:59:08Z) - Projection evolution and quantum spacetime [68.8204255655161]
量子力学における時間の問題について議論する。
許容状態の特別な集合としての量子時空の構成について述べる。
構造のない量子ミンコフスキーのような時空の例も考慮されている。
論文 参考訳(メタデータ) (2019-10-24T14:54:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。