論文の概要: Variational Quantum Algorithms for Semidefinite Programming
- arxiv url: http://arxiv.org/abs/2112.08859v1
- Date: Thu, 16 Dec 2021 13:10:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-04 09:40:20.741504
- Title: Variational Quantum Algorithms for Semidefinite Programming
- Title(参考訳): 半定義型プログラミングのための変分量子アルゴリズム
- Authors: Dhrumil Patel, Patrick J. Coles, Mark M. Wilde
- Abstract要約: 半定値プログラム(SDP)は、操作研究、最適化、量子情報科学などにおける凸最適化問題である。
本稿では,SDPを近似的に解くための変分量子アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 5.37133760455631
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A semidefinite program (SDP) is a particular kind of convex optimization
problem with applications in operations research, combinatorial optimization,
quantum information science, and beyond. In this work, we propose variational
quantum algorithms for approximately solving SDPs. For one class of SDPs, we
provide a rigorous analysis of their convergence to approximate locally optimal
solutions, under the assumption that they are weakly constrained (i.e., $N\gg
M$, where $N$ is the dimension of the input matrices and $M$ is the number of
constraints). We also provide algorithms for a more general class of SDPs that
requires fewer assumptions. Finally, we numerically simulate our quantum
algorithms for applications such as MaxCut, and the results of these
simulations provide evidence that convergence still occurs in noisy settings.
- Abstract(参考訳): semidefinite program (sdp) は、オペレーション研究、組合せ最適化、量子情報科学などの応用分野において、特定の種類の凸最適化問題である。
本研究では,sdpsを近似解くための変分量子アルゴリズムを提案する。
一種類のSDPに対して、それらの収束の厳密な解析を局所最適解に提供し、それらが弱制約(例えば$N\gg M$、$N$は入力行列の次元、$M$は制約の数)であると仮定する。
また、仮定の少ないより一般的なSDPのアルゴリズムも提供する。
最後に,maxcutなどのアプリケーションに対して量子アルゴリズムを数値シミュレーションし,これらのシミュレーション結果から,雑音環境下においても収束が継続することを示す。
関連論文リスト
- Solving the Independent Domination Problem by Quantum Approximate Optimization Algorithm [0.5919433278490629]
独立支配問題(IDP)は、様々な現実のシナリオにおいて実践的な意味を持つ。
IDPの既存の古典的アルゴリズムは計算の複雑さに悩まされている。
本稿では、IDPに対処するための量子近似最適化(QAOA)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-22T17:49:00Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
最近提案された量子アルゴリズムarXiv:2206.14999は半定値プログラミング(SDP)に基づいている
SDPにインスパイアされた量子アルゴリズムを2乗和に一般化する。
この結果から,本アルゴリズムは大きな問題に適応し,最もよく知られた古典学に近似することが示唆された。
論文 参考訳(メタデータ) (2024-08-14T19:04:13Z) - Compact quantum algorithms for time-dependent differential equations [0.0]
我々は、ユニタリの線形結合に基づくアイデアに基づいて、非ユニタリで非エルミート量子系をシミュレートする。
我々は,反復行列ベクトル乗算と行列逆演算を効率的に行うハイブリッド量子古典アルゴリズムを生成する。
論文 参考訳(メタデータ) (2024-05-16T02:14:58Z) - Quantum Semidefinite Programming with Thermal Pure Quantum States [0.5639904484784125]
行列乗法重み付けアルゴリズムの量子化'''は、古典的アルゴリズムよりも2次的に高速なSDPの近似解が得られることを示す。
この量子アルゴリズムを改良し、ギブス状態サンプリング器を熱純量子(TPQ)状態に置き換えることで、同様のスピードアップが得られることを示す。
論文 参考訳(メタデータ) (2023-10-11T18:00:53Z) - End-to-end resource analysis for quantum interior point methods and portfolio optimization [63.4863637315163]
問題入力から問題出力までの完全な量子回路レベルのアルゴリズム記述を提供する。
アルゴリズムの実行に必要な論理量子ビットの数と非クリフォードTゲートの量/深さを報告する。
論文 参考訳(メタデータ) (2022-11-22T18:54:48Z) - The Quantum Approximate Optimization Algorithm performance with low
entanglement and high circuit depth [0.0]
変分量子アルゴリズムは、現在の雑音量子コンピュータを使用する最も広範な方法の1つである。
最適化問題の解法における絡み合いの役割について検討する。
ここでは, 絡み合いが MaxCut と Exact Cover 3 問題において軽微な役割を担っていると結論づける。
論文 参考訳(メタデータ) (2022-07-07T16:21:36Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
本稿では,n+1$ qubitsしか使用しないGoemans-Williamsonアルゴリズムの変分量子アルゴリズムを提案する。
補助量子ビット上で適切にパラメータ化されたユニタリ条件として目的行列を符号化することにより、効率的な最適化を実現する。
各種NPハード問題に対して,Goemans-Williamsonアルゴリズムの量子的効率的な実装を考案し,提案プロトコルの有効性を実証する。
論文 参考訳(メタデータ) (2022-06-30T03:15:23Z) - An entanglement perspective on the quantum approximate optimization
algorithm [0.0]
ランダム化および最適化されたQAOA回路による絡み合いの増大と広がりについて検討する。
また、ランダム行列理論に関連する絡み合いスペクトルについても検討する。
論文 参考訳(メタデータ) (2022-06-14T17:37:44Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
有名な最小二乗モンテカルロ (LSM) アルゴリズムは、線形最小二乗回帰とモンテカルロシミュレーションを組み合わせることで、最適停止理論の問題を解決する。
プロセスへの量子アクセス、最適な停止時間を計算するための量子回路、モンテカルロの量子技術に基づく量子LSMを提案する。
論文 参考訳(メタデータ) (2021-11-30T12:21:41Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。