論文の概要: Transfer Learning in Quantum Parametric Classifiers: An
Information-Theoretic Generalization Analysis
- arxiv url: http://arxiv.org/abs/2201.06297v1
- Date: Mon, 17 Jan 2022 09:28:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-19 18:57:03.438303
- Title: Transfer Learning in Quantum Parametric Classifiers: An
Information-Theoretic Generalization Analysis
- Title(参考訳): 量子パラメトリック分類器における転送学習:情報理論一般化分析
- Authors: Sharu Theresa Jose and Osvaldo Simeone
- Abstract要約: 古典的な入力を持つ量子機械学習における重要なステップは、入力を量子状態にマッピングする埋め込み回路の設計である。
本稿では,任意のパラメトリック量子回路を用いて古典-量子埋め込みを行う移動学習環境について検討する。
- 参考スコア(独自算出の注目度): 42.275148861039895
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A key step in quantum machine learning with classical inputs is the design of
an embedding circuit mapping inputs to a quantum state. This paper studies a
transfer learning setting in which classical-to-quantum embedding is carried
out by an arbitrary parametric quantum circuit that is pre-trained based on
data from a source task. At run time, the binary classifier is then optimized
based on data from the target task of interest. Using an information-theoretic
approach, we demonstrate that the average excess risk, or optimality gap, can
be bounded in terms of two R\'enyi mutual information terms between classical
input and quantum embedding under source and target tasks, as well as in terms
of a measure of similarity between the source and target tasks related to the
trace distance. The main theoretical results are validated on a simple binary
classification example.
- Abstract(参考訳): 古典的な入力を持つ量子機械学習の重要なステップは、入力を量子状態にマッピングする埋め込み回路の設計である。
本稿では,古典-量子埋め込みを任意のパラメトリック量子回路で実行し,ソースタスクのデータに基づいて事前学習する移行学習環境について検討する。
実行時に、バイナリ分類器は、対象とするタスクからのデータに基づいて最適化される。
情報理論的なアプローチを用いて, 平均余剰リスク(最適性ギャップ)は, 古典入力と量子埋め込みの2つの相互情報項と, トレース距離に関連するソースとターゲットタスクの類似度尺度を用いて境界化できることを実証する。
主な理論的結果は単純な二項分類の例で検証される。
関連論文リスト
- Dissipation-driven quantum generative adversarial networks [11.833077116494929]
本稿では,従来のデータ生成に適した,分散駆動型量子生成逆数ネットワーク(DQGAN)アーキテクチャを提案する。
古典データは、強い調整された散逸過程を通じて入力層の入力量子ビットに符号化される。
出力量子ビットの定常状態の可観測値を測定することにより、生成されたデータと分類結果の両方を抽出する。
論文 参考訳(メタデータ) (2024-08-28T07:41:58Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - A hybrid quantum-classical classifier based on branching multi-scale
entanglement renormalization ansatz [5.548873288570182]
本稿では,ラベル伝搬に基づく量子半教師付き分類器を提案する。
グラフ構築の難しさを考慮し,変分量子ラベル伝搬法(VQLP)を開発した。
本手法では、最適化に必要なパラメータを減らすために、局所パラメータ化量子回路を作成する。
論文 参考訳(メタデータ) (2023-03-14T13:46:45Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Learnability of the output distributions of local quantum circuits [53.17490581210575]
2つの異なるオラクルモデルにおいて、量子回路Bornマシンの学習可能性について検討する。
我々はまず,超対数深度クリフォード回路の出力分布がサンプル効率良く学習できないという負の結果を示した。
より強力なオラクルモデル、すなわちサンプルに直接アクセスすると、局所的なクリフォード回路の出力分布は計算効率よくPACを学習可能であることを示す。
論文 参考訳(メタデータ) (2021-10-11T18:00:20Z) - Tree tensor network classifiers for machine learning: from
quantum-inspired to quantum-assisted [0.0]
本稿では,データベクトルの長さが指数関数的に大きいヒルベルト空間において,多変量データを量子状態に符号化する量子支援機械学習(QAML)法について述べる。
本稿ではゲートベースの量子コンピューティングデバイスに実装可能なアプローチを提案する。
論文 参考訳(メタデータ) (2021-04-06T02:31:48Z) - Hybrid quantum-classical classifier based on tensor network and
variational quantum circuit [0.0]
本稿では、量子インスパイアされたテンソルネットワーク(TN)と変分量子回路(VQC)を組み合わせて教師付き学習タスクを行うハイブリッドモデルを提案する。
低結合次元の行列積状態に基づくTNは、MNISTデータセットのバイナリ分類において、VQCの入力のためのデータを圧縮する特徴抽出器としてPCAよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-30T09:43:59Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUINTIFYは、量子回路の定量的解析のためのオープンソースのフレームワークである。
Google Cirqをベースにしており、Clifford+T回路を念頭に開発されている。
ベンチマークのため、QUINTIFYは量子メモリと量子演算回路を含む。
論文 参考訳(メタデータ) (2020-07-21T15:36:25Z) - Quantum embeddings for machine learning [5.16230883032882]
量子分類器は、機械学習モデルとして使用されるトレーニング可能な量子回路である。
我々は、ヒルベルト空間におけるデータクラスを最大限に分離することを目的として、回路の最初の部分(埋め込み)を訓練することを提案する。
このアプローチは量子機械学習のための強力な分析フレームワークを提供する。
論文 参考訳(メタデータ) (2020-01-10T19:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。