論文の概要: Message Passing Neural PDE Solvers
- arxiv url: http://arxiv.org/abs/2202.03376v1
- Date: Mon, 7 Feb 2022 17:47:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-08 15:47:01.881125
- Title: Message Passing Neural PDE Solvers
- Title(参考訳): メッセージパッシング型ニューラルPDE解法
- Authors: Johannes Brandstetter, Daniel Worrall, Max Welling
- Abstract要約: 偏微分方程式(PDE)の数値解は困難であり、これまでの1世紀にわたる研究に繋がった。
近年、ニューラルネットワークと数値のハイブリッド・ソルバの構築が推進されており、これは現代のエンドツーエンドの学習システムへのトレンドを後押ししている。
この研究では、すべてのコンポーネントがニューラルメッセージパッシングに基づいて、これらの特性を満たす解決器を構築します。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
- 参考スコア(独自算出の注目度): 60.77761603258397
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The numerical solution of partial differential equations (PDEs) is difficult,
having led to a century of research so far. Recently, there have been pushes to
build neural--numerical hybrid solvers, which piggy-backs the modern trend
towards fully end-to-end learned systems. Most works so far can only generalize
over a subset of properties to which a generic solver would be faced,
including: resolution, topology, geometry, boundary conditions, domain
discretization regularity, dimensionality, etc. In this work, we build a
solver, satisfying these properties, where all the components are based on
neural message passing, replacing all heuristically designed components in the
computation graph with backprop-optimized neural function approximators. We
show that neural message passing solvers representationally contain some
classical methods, such as finite differences, finite volumes, and WENO
schemes. In order to encourage stability in training autoregressive models, we
put forward a method that is based on the principle of zero-stability, posing
stability as a domain adaptation problem. We validate our method on various
fluid-like flow problems, demonstrating fast, stable, and accurate performance
across different domain topologies, discretization, etc. in 1D and 2D. Our
model outperforms state-of-the-art numerical solvers in the low resolution
regime in terms of speed and accuracy.
- Abstract(参考訳): 偏微分方程式(PDE)の数値解は困難であり、これまでの1世紀にわたる研究に繋がった。
近年,完全エンド・ツー・エンド学習システムへの最新のトレンドを裏付ける,ニューラルネットワーク-数値ハイブリッドソルバの開発が進められている。
これまでのほとんどの研究は、分解、位相、幾何学、境界条件、領域の離散化正則性、次元性など、一般的な解法が直面するような性質のサブセットにのみ一般化できる。
本研究では,計算グラフ内のヒューリスティックに設計されたすべてのコンポーネントを,バックプロップ最適化されたニューラル関数近似器に置き換えることで,これらの特性を満たす解法を構築する。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
自己回帰モデルの訓練における安定性を高めるために,ゼロ安定性の原理に基づく手法を提案し,ドメイン適応問題として安定性を呈する。
各種流体流問題に対する本手法の有効性を検証し, 異なる領域のトポロジ, 離散化等における高速, 安定, 高精度な性能を示す。
本モデルでは,低分解能状態における最先端数値解法の性能を,速度と精度で向上させる。
関連論文リスト
- NeuralStagger: accelerating physics-constrained neural PDE solver with
spatial-temporal decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
我々は、統合された神経部分遅延微分方程式の新規で汎用的な方法論を開発した。
マルコフ型および非マルコフ型ニューラルネットワーク(NN)の閉包パラメータ化を用いて, 偏微分方程式(PDE)における既存/低忠実度力学モデルを直接拡張する。
本研究では, 非線形波動, 衝撃波, 海洋酸性化モデルに基づく4つの実験セットを用いて, 新しい一般化ニューラルクロージャモデル(gnCMs)の枠組みを実証する。
論文 参考訳(メタデータ) (2023-01-15T21:57:43Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
本稿では,この目的関数の定式化方法が,PINNアプローチにおける厳密な制約の源であることを示す。
本稿では,逆問題と前方問題の両方に対処可能な多目的フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-30T05:55:35Z) - Semi-Implicit Neural Solver for Time-dependent Partial Differential
Equations [4.246966726709308]
本稿では,PDEの任意のクラスに対して,データ駆動方式で最適な反復スキームを学習するためのニューラルソルバを提案する。
従来の反復解法に類似したニューラルソルバの正当性と収束性に関する理論的保証を提供する。
論文 参考訳(メタデータ) (2021-09-03T12:03:10Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
本研究では,ソルバ空間の変動がニューラルODEの性能を向上する方法について検討する。
解法パラメータ化の正しい選択は, 敵の攻撃に対するロバスト性の観点から, 神経odesモデルに大きな影響を与える可能性がある。
論文 参考訳(メタデータ) (2021-03-15T17:26:34Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。