論文の概要: Asymptotic Theory of Geometric and Adaptive $k$-Means Clustering
- arxiv url: http://arxiv.org/abs/2202.13423v2
- Date: Fri, 27 Jun 2025 23:01:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-02 17:57:15.484009
- Title: Asymptotic Theory of Geometric and Adaptive $k$-Means Clustering
- Title(参考訳): 幾何学的および適応的な$k$-平均クラスタリングの漸近理論
- Authors: Adam Quinn Jaffe,
- Abstract要約: 我々は、ユークリッド空間における$k$-meansクラスタリングの一貫性に関するポラードの古典的な結果を再考する。
上に述べたすべてのクラスタリング手順が強く整合していることが示される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We revisit Pollard's classical result on consistency for $k$-means clustering in Euclidean space, with a focus on extensions in two directions: first, to problems where the data may come from interesting geometric settings (e.g., Riemannian manifolds, reflexive Banach spaces, or the Wasserstein space); second, to problems where some parameters are chosen adaptively from the data (e.g., $k$-medoids or elbow-method $k$-means). Towards this end, we provide a general theory which shows that all clustering procedures described above are strongly consistent. In fact, our method of proof allows us to derive many asymptotic limit theorems beyond strong consistency. We also remove all assumptions about uniqueness of the set of optimal cluster centers.
- Abstract(参考訳): ユークリッド空間における$k$-meansクラスタリングの整合性に関するポラードの古典的な結果を再考する: まず、データが興味深い幾何学的設定(例えば、リーマン多様体、回帰バナッハ空間、ワッサーシュタイン空間)から来る問題に、そしてデータ(例えば、$k$-medoids または elbow-method $k$-means)から適応的に選択される問題に焦点をあてる。
この目的に向けて、上記のすべてのクラスタリング手順が強く一貫したものであることを示す一般的な理論を提供する。
実際、我々の証明法は、強い整合性を超えた多くの漸近極限定理を導出することができる。
また、最適なクラスタセンターの集合の特異性に関するすべての仮定も取り除きます。
関連論文リスト
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - Correspondence-Free Non-Rigid Point Set Registration Using Unsupervised Clustering Analysis [28.18800845199871]
非教師なしクラスタリング解析に触発された、新しい非厳密な点集合登録法を提案する。
提案手法は,様々なシナリオにおいて高い精度を達成し,競争相手をはるかに上回っている。
論文 参考訳(メタデータ) (2024-06-27T01:16:44Z) - GCC: Generative Calibration Clustering [55.44944397168619]
本稿では,特徴学習と拡張をクラスタリングに組み込む新しいGCC法を提案する。
まず,実検体と実検体間の固有関係を識別する識別的特徴アライメント機構を開発する。
第二に、より信頼性の高いクラスタ割り当てを生成するための自己教師付きメトリック学習を設計する。
論文 参考訳(メタデータ) (2024-04-14T01:51:11Z) - Deep Embedding Clustering Driven by Sample Stability [16.53706617383543]
サンプル安定性(DECS)により駆動されるディープ埋め込みクラスタリングアルゴリズムを提案する。
具体的には、まずオートエンコーダで初期特徴空間を構築し、次にサンプル安定性に制約されたクラスタ指向の埋め込み機能を学ぶ。
5つのデータセットに対する実験結果から,提案手法は最先端のクラスタリング手法と比較して優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-01-29T09:19:49Z) - Stable Cluster Discrimination for Deep Clustering [7.175082696240088]
ディープクラスタリングは、インスタンスの表現(つまり、表現学習)を最適化し、固有のデータ分散を探索することができる。
結合された目的は、すべてのインスタンスが一様機能に崩壊する、自明な解決策を意味する。
本研究では,1段階クラスタリングにおいて,教師あり学習における一般的な識別タスクが不安定であることを示す。
新規な安定クラスタ識別(SeCu)タスクを提案し、それに応じて新しいハードネス対応クラスタリング基準を得ることができる。
論文 参考訳(メタデータ) (2023-11-24T06:43:26Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
異種環境における分散学習のためのコミュニケーション効率化手法のファミリーを提案する。
ユーザによるローカル計算に基づくワンショットアプローチと、サーバにおけるクラスタリングベースのアグリゲーションステップは、強力な学習保証を提供する。
厳密な凸問題に対しては,ユーザ毎のデータ点数がしきい値を超える限り,提案手法はサンプルサイズの観点から順序最適平均二乗誤差率を達成する。
論文 参考訳(メタデータ) (2022-09-22T09:04:10Z) - Gradient Based Clustering [72.15857783681658]
本稿では,クラスタリングの品質を計測するコスト関数の勾配を用いて,距離に基づくクラスタリングの一般的な手法を提案する。
アプローチは反復的な2段階の手順(クラスタ割り当てとクラスタセンターのアップデートの代替)であり、幅広い機能に適用できる。
論文 参考訳(メタデータ) (2022-02-01T19:31:15Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。