論文の概要: Understanding the Difficulty of Training Physics-Informed Neural
Networks on Dynamical Systems
- arxiv url: http://arxiv.org/abs/2203.13648v1
- Date: Fri, 25 Mar 2022 13:50:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-28 14:11:55.427981
- Title: Understanding the Difficulty of Training Physics-Informed Neural
Networks on Dynamical Systems
- Title(参考訳): 力学系における物理情報ニューラルネットワークの訓練の難しさの理解
- Authors: Franz M. Rohrhofer, Stefan Posch, Clemens G\"o{\ss}nitzer, Bernhard C.
Geiger
- Abstract要約: 物理情報ニューラルネットワーク(PINN)は、微分方程式によって支配される問題の解決にデータと物理的制約をシームレスに統合する。
力学系の固定点近傍における物理損失関数について検討する。
計算領域の削減は、最適化の複雑さと非物理的解に閉じ込められる確率を低下させる。
- 参考スコア(独自算出の注目度): 5.878411350387833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs) seamlessly integrate data and
physical constraints into the solving of problems governed by differential
equations. In settings with little labeled training data, their optimization
relies on the complexity of the embedded physics loss function. Two fundamental
questions arise in any discussion of frequently reported convergence issues in
PINNs: Why does the optimization often converge to solutions that lack physical
behavior? And why do reduced domain methods improve convergence behavior in
PINNs? We answer these questions by studying the physics loss function in the
vicinity of fixed points of dynamical systems. Experiments on a simple
dynamical system demonstrate that physics loss residuals are trivially
minimized in the vicinity of fixed points. As a result we observe that
solutions corresponding to nonphysical system dynamics can be dominant in the
physics loss landscape and optimization. We find that reducing the
computational domain lowers the optimization complexity and chance of getting
trapped with nonphysical solutions.
- Abstract(参考訳): 物理情報ニューラルネットワーク(PINN)は、微分方程式によって支配される問題の解決にデータと物理的制約をシームレスに統合する。
ラベル付きトレーニングデータの少ない設定では、それらの最適化は埋め込み物理損失関数の複雑さに依存する。
PINNで頻繁に報告される収束問題に関して、基本的な2つの疑問が議論されている。
そしてなぜドメインメソッドがPINNの収束挙動を改善するのか?
力学系の固定点近傍の物理損失関数について検討することにより,これらの疑問に答える。
単純な力学系の実験では、物理損失残差は固定点近傍で自明に最小化されている。
その結果,非物理系力学に対応する解は,物理損失の展望と最適化において支配的であることがわかった。
計算領域の削減は、最適化の複雑さと非物理的解に閉じ込められる確率を低下させる。
関連論文リスト
- A Physics Informed Neural Network (PINN) Methodology for Coupled Moving Boundary PDEs [0.0]
物理インフォームドニューラルネットワーク(PINN)は、微分方程式(DE)を用いてモデル化された物理問題を解くのに役立つ新しいマルチタスク学習フレームワークである
本稿では、複数の制御パラメータ(エネルギーと種、および複数のインターフェースバランス方程式)を含む結合システムを解決するためのPINNベースのアプローチについて報告する。
論文 参考訳(メタデータ) (2024-09-17T06:00:18Z) - An Analysis of Physics-Informed Neural Networks [0.0]
我々は物理システム – 物理インフォームドニューラルネットワーク – に対する解を近似する新しいアプローチを提案する。
人工ニューラルネットワークの概念を導入し、目的関数を定義し、最適化戦略について議論する。
偏微分方程式は、問題の損失関数の制約として含まれ、ネットワークがモデリングしている物理系の力学の知識にアクセスできる。
論文 参考訳(メタデータ) (2023-03-06T04:45:53Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Adaptive Self-supervision Algorithms for Physics-informed Neural
Networks [59.822151945132525]
物理情報ニューラルネットワーク(PINN)は、損失関数のソフト制約として問題領域からの物理的知識を取り入れている。
これらのモデルの訓練性に及ぼす座標点の位置の影響について検討した。
モデルがより高い誤りを犯している領域に対して、より多くのコロケーションポイントを段階的に割り当てる適応的コロケーション方式を提案する。
論文 参考訳(メタデータ) (2022-07-08T18:17:06Z) - Critical Investigation of Failure Modes in Physics-informed Neural
Networks [0.9137554315375919]
合成定式化による物理インフォームドニューラルネットワークは、最適化が難しい非学習損失面を生成することを示す。
また,2つの楕円問題に対する2つのアプローチを,より複雑な目標解を用いて評価する。
論文 参考訳(メタデータ) (2022-06-20T18:43:35Z) - Enhanced Physics-Informed Neural Networks with Augmented Lagrangian
Relaxation Method (AL-PINNs) [1.7403133838762446]
物理インフォームドニューラルネットワーク(PINN)は非線形偏微分方程式(PDE)の解の強力な近似器である
PINN(AL-PINN)のための拡張ラグランジアン緩和法を提案する。
AL-PINNは、最先端の適応的損失分散アルゴリズムと比較して、相対誤差がはるかに小さいことを様々な数値実験で示している。
論文 参考訳(メタデータ) (2022-04-29T08:33:11Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。