論文の概要: Real Time Multi-Object Detection for Helmet Safety
- arxiv url: http://arxiv.org/abs/2205.09878v1
- Date: Thu, 19 May 2022 21:56:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-24 09:23:27.701129
- Title: Real Time Multi-Object Detection for Helmet Safety
- Title(参考訳): ヘルメット安全のためのリアルタイムマルチオブジェクト検出
- Authors: Mrinal Mathur, Archana Benkkallpalli Chandrashekhar, Venkata Krishna
Chaithanya Nuthalapati
- Abstract要約: 我々は,検出したヘルメットの衝撃を追跡情報を介してプレイヤーに割り当てるコンピュータビジョンベースのMLアルゴリズムを実装しようとしている。
これはまた、過去の劇をレビューし、露出の傾向を時間とともに調査することを可能にする。
- 参考スコア(独自算出の注目度): 0.9434133337939499
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The National Football League and Amazon Web Services teamed up to develop the
best sports injury surveillance and mitigation program via the Kaggle
competition. Through which the NFL wants to assign specific players to each
helmet, which would help accurately identify each player's "exposures"
throughout a football play. We are trying to implement a computer vision based
ML algorithms capable of assigning detected helmet impacts to correct players
via tracking information. Our paper will explain the approach to automatically
track player helmets and their collisions. This will also allow them to review
previous plays and explore the trends in exposure over time.
- Abstract(参考訳): ナショナル・フットボール・リーグとAmazon Web Servicesは、カグル・コンペティションを通じて最高のスポーツ傷害監視と緩和プログラムを開発するために協力した。
nflはそれぞれのヘルメットに特定の選手を割り当てることで、試合中各選手の「露出」を正確に識別することを目指している。
我々は,検出したヘルメットの衝撃を追跡情報を介してプレイヤーに割り当てるコンピュータビジョンベースのMLアルゴリズムを実装しようとしている。
本稿は,選手のヘルメットとその衝突を自動的に追跡するアプローチについて説明する。
これにより、過去のプレイをレビューしたり、時間とともに露出の傾向を調査できる。
関連論文リスト
- Deep learning for action spotting in association football videos [64.10841325879996]
SoccerNetイニシアチブは毎年の課題を組織し、世界中の参加者が最先端のパフォーマンスを達成するために競う。
本稿では,スポーツにおけるアクションスポッティングの歴史を,2018年の課題の創出から,現在の研究・スポーツ産業における役割まで遡る。
論文 参考訳(メタデータ) (2024-10-02T07:56:15Z) - Deep Understanding of Soccer Match Videos [20.783415560412003]
サッカーは世界中で最も人気のあるスポーツの1つであり、主要な試合で頻繁に放送される。
本システムでは, サッカーボール, 選手, 審判などの重要な物体を検知できる。
また、プレイヤーとボールの動きを追跡し、プレイヤーの番号を認識し、シーンを分類し、ゴールキックのようなハイライトを識別する。
論文 参考訳(メタデータ) (2024-07-11T05:54:13Z) - SoccerNet Game State Reconstruction: End-to-End Athlete Tracking and Identification on a Minimap [102.5232204867158]
我々は、ゲーム状態再構成のタスクを形式化し、フットボールビデオに焦点を当てた新しいゲーム状態再構成データセットである、サッカーネット-GSRを紹介する。
SoccerNet-GSRは、ピッチローカライゼーションとカメラキャリブレーションのための937万行のアノテートにより、30秒間の200の動画シーケンスで構成されている。
我々の実験は、GSRは挑戦的な新しい課題であり、将来の研究の場を開くことを示している。
論文 参考訳(メタデータ) (2024-04-17T12:53:45Z) - A Survey on Video Action Recognition in Sports: Datasets, Methods and
Applications [60.3327085463545]
本稿では,スポーツ分析のための映像行動認識に関する調査を行う。
サッカー、バスケットボール、バレーボール、ホッケー、フィギュアスケート、体操、卓球、ダイビング、バドミントンなど10種以上のスポーツを紹介します。
本研究では,サッカー,バスケットボール,卓球,フィギュアスケート動作認識をサポートするPaddlePaddleを用いたツールボックスを開発した。
論文 参考訳(メタデータ) (2022-06-02T13:19:36Z) - Evaluating deep tracking models for player tracking in broadcast ice
hockey video [20.850267622473176]
選手追跡は、ホッケー選手の動きが高速で非線形であるため、難しい問題である。
我々は、いくつかの最先端追跡アルゴリズムを比較し、アイスホッケーのパフォーマンスと失敗モードを分析した。
論文 参考訳(メタデータ) (2022-05-22T22:56:31Z) - Automated player identification and indexing using two-stage deep
learning network [0.23610495849936355]
本稿では,アメリカンフットボールの試合における選手の参加を自動的に追跡し,その参加度を指標とする深層学習型選手追跡システムを提案する。
関心領域をハイライトし、ジャージ番号情報を高精度に識別するための2段階ネットワーク設計である。
フットボールビデオの質的,定量的な結果を分析することにより,選手追跡システムの有効性と信頼性を実証する。
論文 参考訳(メタデータ) (2022-04-26T02:59:03Z) - SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in
Soccer Videos [62.686484228479095]
本稿では,各30の200列からなる複数物体追跡のための新しいデータセットを提案する。
データセットは、バウンディングボックスとトラックレットIDで完全に注釈付けされている。
分析の結果,サッカービデオにおける複数の選手,審判,ボール追跡が解決されるには程遠いことがわかった。
論文 参考訳(メタデータ) (2022-04-14T12:22:12Z) - Efficient tracking of team sport players with few game-specific
annotations [1.052782170493037]
そこで本研究では,セミ・インタラクティブ・システムを通じて収集された人間のアノテーションがほとんどないため,チームスポーツ選手をフルゲーム中に追跡する新たな汎用手法を提案する。
非曖昧なトラックレットとその外観特徴は、両方の公開データセットで事前訓練された検出と再識別ネットワークによって自動的に生成される。
ラグビーのセブンスデータセットにアプローチの効率性を示す。
論文 参考訳(メタデータ) (2022-04-08T13:11:30Z) - Collusion Detection in Team-Based Multiplayer Games [57.153233321515984]
チームベースのマルチプレイヤーゲームにおいて,協調動作を検出するシステムを提案する。
提案手法は,ゲーム内行動パターンと組み合わせたプレイヤーの社会的関係を解析する。
次に,非教師なし学習手法であるアイソレーションフォレストによる検出を自動化する。
論文 参考訳(メタデータ) (2022-03-10T02:37:39Z) - Automated Tackle Injury Risk Assessment in Contact-Based Sports -- A
Rugby Union Example [1.160208922584163]
タックル・コリジョンに基づくスポーツにおけるビデオ分析は主観的で偏見にさらされる。
タックル・コリジョンに基づくスポーツにおけるマッチング分析の制限は、コンピュータビジョン応用の機会と見なすことができる。
ラグビーユニオンの試合におけるゲーム内タックルリスクを客観的に評価するシステムを提案する。
論文 参考訳(メタデータ) (2021-04-22T07:51:33Z) - Game Plan: What AI can do for Football, and What Football can do for AI [83.79507996785838]
予測的および規範的フットボール分析は、統計学習、ゲーム理論、コンピュータビジョンの交差点における新たな発展と進歩を必要とする。
フットボール分析は、サッカー自体のゲームを変えるだけでなく、この領域がAIの分野で何を意味するのかという観点からも、非常に価値の高いゲームチェンジャーであることを示す。
論文 参考訳(メタデータ) (2020-11-18T10:26:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。