論文の概要: Evaluating deep tracking models for player tracking in broadcast ice
hockey video
- arxiv url: http://arxiv.org/abs/2205.10949v1
- Date: Sun, 22 May 2022 22:56:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-29 15:19:35.730100
- Title: Evaluating deep tracking models for player tracking in broadcast ice
hockey video
- Title(参考訳): アイスホッケー映像におけるプレイヤー追跡のためのディープトラッキングモデルの評価
- Authors: Kanav Vats, Mehrnaz Fani, David A. Clausi, John S. Zelek
- Abstract要約: 選手追跡は、ホッケー選手の動きが高速で非線形であるため、難しい問題である。
我々は、いくつかの最先端追跡アルゴリズムを比較し、アイスホッケーのパフォーマンスと失敗モードを分析した。
- 参考スコア(独自算出の注目度): 20.850267622473176
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Tracking and identifying players is an important problem in computer vision
based ice hockey analytics. Player tracking is a challenging problem since the
motion of players in hockey is fast-paced and non-linear. There is also
significant player-player and player-board occlusion, camera panning and
zooming in hockey broadcast video. Prior published research perform player
tracking with the help of handcrafted features for player detection and
re-identification. Although commercial solutions for hockey player tracking
exist, to the best of our knowledge, no network architectures used, training
data or performance metrics are publicly reported. There is currently no
published work for hockey player tracking making use of the recent advancements
in deep learning while also reporting the current accuracy metrics used in
literature. Therefore, in this paper, we compare and contrast several
state-of-the-art tracking algorithms and analyze their performance and failure
modes in ice hockey.
- Abstract(参考訳): プレイヤーの追跡と識別は、コンピュータビジョンに基づくアイスホッケー分析において重要な問題である。
ホッケーの選手の動きは速いペースで非線形であるため、選手追跡は難しい問題である。
また、ホッケーの放送ビデオでは、プレイヤープレイヤーとプレイヤーボードのオクルージョン、カメラのパンニング、ズームも顕著である。
以前に公開された研究は、プレイヤーの検出と再識別のための手作り機能を使ってプレイヤー追跡を行う。
ホッケー選手追跡のための商用ソリューションは存在するが、私たちの知る限り、使用しているネットワークアーキテクチャやトレーニングデータ、パフォーマンスメトリクスは公開されていない。
現在、ディープラーニングの最近の進歩を活かしたホッケー選手追跡の成果は発表されていないが、文献で使われている現在の精度指標も報告している。
そこで本稿では,いくつかの最先端追跡アルゴリズムを比較して比較し,アイスホッケーにおけるその性能および故障モードを解析する。
関連論文リスト
- Deep learning for action spotting in association football videos [64.10841325879996]
SoccerNetイニシアチブは毎年の課題を組織し、世界中の参加者が最先端のパフォーマンスを達成するために競う。
本稿では,スポーツにおけるアクションスポッティングの歴史を,2018年の課題の創出から,現在の研究・スポーツ産業における役割まで遡る。
論文 参考訳(メタデータ) (2024-10-02T07:56:15Z) - Multi Player Tracking in Ice Hockey with Homographic Projections [13.320838012645444]
アイスホッケーにおけるマルチオブジェクト追跡(MOT)は、選手の身元を維持するために、特定のシーケンスにまたがるプレイヤーのローカライズとアソシエイトという複合的なタスクを追求する。
ホモグラフィーを応用した二部グラフマッチング問題としてMOTを定式化した新しい追跡手法を提案する。
我々は,足のキーポイントをオーバヘッドリンクテンプレートにマッピングし,これらの投影された位置をグラフネットワークにエンコードすることで,放送ビューにおけるOccludedとOverlappingのプレイヤーの位置表現を解き放つ。
論文 参考訳(メタデータ) (2024-05-22T07:14:55Z) - Understanding why shooters shoot -- An AI-powered engine for basketball
performance profiling [70.54015529131325]
バスケットボールは、プレイスタイルやゲームダイナミクスなど、多くの変数によって規定されている。
パフォーマンスプロファイルが様々なプレイスタイルを反映できることは重要です。
プレイヤのパフォーマンスプロファイルをタイムリーに可視化するツールを提案する。
論文 参考訳(メタデータ) (2023-03-17T01:13:18Z) - A Graph-Based Method for Soccer Action Spotting Using Unsupervised
Player Classification [75.93186954061943]
アクションスポッティングには、ゲームのダイナミクス、イベントの複雑さ、ビデオシーケンスのバリエーションを理解することが含まれる。
本研究では, (a) 選手, 審判, ゴールキーパーをグラフのノードとして識別し, および (b) 時間的相互作用をグラフのシーケンスとしてモデル化することによって, 前者に焦点を当てる。
プレーヤ識別タスクでは,他のモダリティと組み合わせることで,平均mAPの57.83%の総合的な性能が得られる。
論文 参考訳(メタデータ) (2022-11-22T15:23:53Z) - Graph-Based Multi-Camera Soccer Player Tracker [1.6244541005112743]
本稿では,サッカー場周辺に設置した複数のキャリブレーションカメラから,長撮影映像記録におけるサッカー選手の追跡を目的としたマルチカメラ追跡手法を提案する。
カメラとの距離が大きいため、個々のプレイヤーを視覚的に区別することは困難であり、従来のソリューションの性能に悪影響を及ぼす。
本手法は,各プレイヤーのダイナミクスと周辺プレイヤー間の相互作用に着目し,トラッキング性能の向上を図る。
論文 参考訳(メタデータ) (2022-11-03T20:01:48Z) - Observation Centric and Central Distance Recovery on Sports Player
Tracking [24.396926939889532]
本稿では,バスケットボール,サッカー,バレーボールを含む3つのスポーツを対象とした,モーションベースのトラッキングアルゴリズムと3つのポストプロセッシングパイプラインを提案する。
本手法は,2022年のSportsmotワークショップ最終リーダーボードで3位にランクインした73.968のHOTAを達成した。
論文 参考訳(メタデータ) (2022-09-27T04:48:11Z) - P2ANet: A Dataset and Benchmark for Dense Action Detection from Table Tennis Match Broadcasting Videos [64.57435509822416]
この作品は、ワールド・テーブルテニス選手権とオリンピアードのプロの卓球試合の放送ビデオから収集された2,721本のビデオクリップで構成されている。
強調局所化と強調認識という2つのアクション検出問題を定式化する。
その結果、TheNameは依然として困難なタスクであり、ビデオからの高密度なアクション検出のための特別なベンチマークとして使用できることを確認した。
論文 参考訳(メタデータ) (2022-07-26T08:34:17Z) - A Survey on Video Action Recognition in Sports: Datasets, Methods and
Applications [60.3327085463545]
本稿では,スポーツ分析のための映像行動認識に関する調査を行う。
サッカー、バスケットボール、バレーボール、ホッケー、フィギュアスケート、体操、卓球、ダイビング、バドミントンなど10種以上のスポーツを紹介します。
本研究では,サッカー,バスケットボール,卓球,フィギュアスケート動作認識をサポートするPaddlePaddleを用いたツールボックスを開発した。
論文 参考訳(メタデータ) (2022-06-02T13:19:36Z) - SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in
Soccer Videos [62.686484228479095]
本稿では,各30の200列からなる複数物体追跡のための新しいデータセットを提案する。
データセットは、バウンディングボックスとトラックレットIDで完全に注釈付けされている。
分析の結果,サッカービデオにおける複数の選手,審判,ボール追跡が解決されるには程遠いことがわかった。
論文 参考訳(メタデータ) (2022-04-14T12:22:12Z) - Player Tracking and Identification in Ice Hockey [9.577770317771087]
本稿では,NHLホッケー映像の選手の追跡と識別を行う自動システムを提案する。
本システムは,(1)選手追跡,(2)チーム識別,(3)プレイヤー識別の3つのコンポーネントから構成される。
チーム識別では、アウトチームジャージは単一のクラスにグループ化され、ホームチームジャージはそのジャージの色に応じてクラスにグループ化される。
時間的一次元畳み込みネットワークを利用してプレイヤー境界ボックス列からプレイヤーを識別する新しいプレイヤー識別モデルを提案する。
論文 参考訳(メタデータ) (2021-10-06T22:37:08Z) - AI-enabled Prediction of eSports Player Performance Using the Data from
Heterogeneous Sensors [12.071865017583502]
我々は,センサのデータのみを用いて,eSportsプレーヤーのゲーム内パフォーマンスを予測する人工知能(AI)対応ソリューションについて報告する。
リカレントニューラルネットワークを用いて、マルチプレイヤーゲームにおけるゲームログから、各モーメント毎のプレイヤー性能を評価する。
提案するソリューションはプロのeスポーツチームやアマチュア選手のための学習ツールに多くの有望な応用がある。
論文 参考訳(メタデータ) (2020-12-07T07:31:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。