論文の概要: Bayesian Learning to Discover Mathematical Operations in Governing
Equations of Dynamic Systems
- arxiv url: http://arxiv.org/abs/2206.00669v1
- Date: Wed, 1 Jun 2022 10:31:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-03 13:51:14.933636
- Title: Bayesian Learning to Discover Mathematical Operations in Governing
Equations of Dynamic Systems
- Title(参考訳): 力学系の制御方程式における数学的操作を発見するベイズ学習
- Authors: Hongpeng Zhou, Wei Pan
- Abstract要約: 本研究は,ニューラルネットワークのような階層構造を持つ数理演算ネットワーク(MathONet)を設計することにより,方程式を制御するための新しい表現を提案する。
MathONetは通常、冗長な構造を持つ超グラフと見なされる。
- 参考スコア(独自算出の注目度): 3.1544304017740634
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Discovering governing equations from data is critical for diverse scientific
disciplines as they can provide insights into the underlying phenomenon of
dynamic systems. This work presents a new representation for governing
equations by designing the Mathematical Operation Network (MathONet) with a
deep neural network-like hierarchical structure. Specifically, the MathONet is
stacked by several layers of unary operations (e.g., sin, cos, log) and binary
operations (e.g., +,-), respectively. An initialized MathONet is typically
regarded as a super-graph with a redundant structure, a sub-graph of which can
yield the governing equation. We develop a sparse group Bayesian learning
algorithm to extract the sub-graph by employing structurally constructed priors
over the redundant mathematical operations. By demonstrating the chaotic Lorenz
system, Lotka-Volterra system, and Kolmogorov-Petrovsky-Piskunov system, the
proposed method can discover the ordinary differential equations (ODEs) and
partial differential equations (PDEs) from the observations given limited
mathematical operations, without any prior knowledge on possible expressions of
the ODEs and PDEs.
- Abstract(参考訳): データから方程式を発見することは、動的システムの根底にある現象に対する洞察を与えるため、様々な科学分野にとって重要である。
本研究は,ニューラルネットワークのような階層構造を持つ数理演算ネットワーク(MathONet)を設計することにより,方程式を制御するための新しい表現を提案する。
具体的には、MathONetには複数の一元演算層(例えば sin, cos, log)とバイナリ演算層(例えば +,-)が積み重ねられている。
初期化されたマソネットは一般に冗長な構造を持つスーパーグラフと見なされ、そのサブグラフは支配方程式を導くことができる。
冗長な数学的操作に対して構造的に構築された事前情報を用いてサブグラフを抽出するスパース群ベイズ学習アルゴリズムを開発した。
chaotic lorenz system, lotka-volterra system, kolmogorov-petrovsky-piskunov system を実演することにより,オデウスと pdes の表現を事前に知ることなく,限定的な数学的操作を与えられた観測から常微分方程式 (odes) と偏微分方程式 (pdes) を発見できる。
関連論文リスト
- A Recursively Recurrent Neural Network (R2N2) Architecture for Learning
Iterative Algorithms [64.3064050603721]
本研究では,リカレントニューラルネットワーク (R2N2) にランゲ・クッタニューラルネットワークを一般化し,リカレントニューラルネットワークを最適化した反復アルゴリズムの設計を行う。
本稿では, 線形方程式系に対するクリロフ解法, 非線形方程式系に対するニュートン・クリロフ解法, 常微分方程式に対するルンゲ・クッタ解法と類似の繰り返しを計算問題クラスの入力・出力データに対して提案した超構造内における重みパラメータの正規化について述べる。
論文 参考訳(メタデータ) (2022-11-22T16:30:33Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - On Neural Differential Equations [13.503274710499971]
特に、ニューラル微分方程式(NDE)は、ニューラルネットワークと微分方程式が同じコインの両側であることを示す。
NDEは生成問題、動的システム、時系列を扱うのに適している。
NDEは高容量関数近似、モデル空間への強い先行性、不規則なデータを扱う能力、メモリ効率、そして両サイドで利用可能な豊富な理論を提供する。
論文 参考訳(メタデータ) (2022-02-04T23:32:29Z) - Artificial neural network as a universal model of nonlinear dynamical
systems [0.0]
このマップは、重みがモデル化されたシステムをエンコードする人工知能ニューラルネットワークとして構築されている。
ローレンツ系、ロースラー系およびヒンドマール・ロースニューロンを考察する。
誘引子、パワースペクトル、分岐図、リャプノフ指数の視覚像に高い類似性が観察される。
論文 参考訳(メタデータ) (2021-03-06T16:02:41Z) - Solving non-linear Kolmogorov equations in large dimensions by using
deep learning: a numerical comparison of discretization schemes [16.067228939231047]
非線形偏微分コルモゴロフ方程式は、幅広い時間依存現象を記述するのに有効である。
深層学習は、これらの方程式を高次元で解くために導入された。
本研究では, 観測された計算の複雑性に影響を与えることなく, 精度の向上が可能であることを示す。
論文 参考訳(メタデータ) (2020-12-09T07:17:26Z) - Symbolically Solving Partial Differential Equations using Deep Learning [5.1964883240501605]
本稿では、微分方程式の正確な解や近似解を生成するニューラルネットワーク手法について述べる。
他のニューラルネットワークとは異なり、我々のシステムは直接解釈できるシンボリック表現を返す。
論文 参考訳(メタデータ) (2020-11-12T22:16:03Z) - A Neuro-Symbolic Method for Solving Differential and Functional
Equations [6.899578710832262]
微分方程式を解くために記号式を生成する方法を提案する。
既存の手法とは異なり、このシステムは記号数学よりも言語モデルを学習する必要はない。
我々は,他の数学的課題に対するシンボリックな解を見つけるために,システムがいかに懸命に一般化されるかを示す。
論文 参考訳(メタデータ) (2020-11-04T17:13:25Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
与えられた観測データから数学的方程式を発見するアルゴリズムについて述べる。
このアルゴリズムは遺伝的プログラミングとスパース回帰を組み合わせたものである。
解析方程式の発見や偏微分方程式(PDE)の発見にも用いられる。
論文 参考訳(メタデータ) (2020-04-03T17:21:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。