論文の概要: Grammar-based Ordinary Differential Equation Discovery
- arxiv url: http://arxiv.org/abs/2504.02630v1
- Date: Thu, 03 Apr 2025 14:28:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 19:35:59.521617
- Title: Grammar-based Ordinary Differential Equation Discovery
- Title(参考訳): 文法に基づく正規微分方程式発見
- Authors: Karin L. Yu, Eleni Chatzi, Georgios Kissas,
- Abstract要約: 常微分方程式(ODE)の終端発見のための新しい枠組みを提案する。
提案手法は形式的形式性低減と高次元空間を効率的に探索するための探索を組み合わせたものである。
Godeは、最先端のトランスフォーマーベースのモデルよりもサンプリングとパラメータ効率が良いことを証明している。
- 参考スコア(独自算出の注目度): 1.5020330976600738
- License:
- Abstract: The understanding and modeling of complex physical phenomena through dynamical systems has historically driven scientific progress, as it provides the tools for predicting the behavior of different systems under diverse conditions through time. The discovery of dynamical systems has been indispensable in engineering, as it allows for the analysis and prediction of complex behaviors for computational modeling, diagnostics, prognostics, and control of engineered systems. Joining recent efforts that harness the power of symbolic regression in this domain, we propose a novel framework for the end-to-end discovery of ordinary differential equations (ODEs), termed Grammar-based ODE Discovery Engine (GODE). The proposed methodology combines formal grammars with dimensionality reduction and stochastic search for efficiently navigating high-dimensional combinatorial spaces. Grammars allow us to seed domain knowledge and structure for both constraining, as well as, exploring the space of candidate expressions. GODE proves to be more sample- and parameter-efficient than state-of-the-art transformer-based models and to discover more accurate and parsimonious ODE expressions than both genetic programming- and other grammar-based methods for more complex inference tasks, such as the discovery of structural dynamics. Thus, we introduce a tool that could play a catalytic role in dynamics discovery tasks, including modeling, system identification, and monitoring tasks.
- Abstract(参考訳): 力学系による複雑な物理現象の理解とモデリングは歴史的に科学的進歩をもたらしており、様々な条件下での様々なシステムの振る舞いを予測するためのツールを提供している。
力学系の発見は、計算モデリング、診断、予後学、工学系の制御のための複雑な振る舞いの分析と予測を可能にするため、工学において不可欠である。
この領域におけるシンボリック回帰の力を利用する最近の取り組みの一環として、グラマーベースODEディスカバリエンジン(GODE)と呼ばれる通常の微分方程式(ODE)の終端発見のための新しい枠組みを提案する。
提案手法は,高次元組合せ空間を効率的に探索するための形式文法と次元減少と確率探索を組み合わせる。
文法は、制約の双方に対してドメイン知識と構造をシードし、候補表現の空間を探索することを可能にする。
GODEは、最先端のトランスフォーマーベースモデルよりもサンプリングとパラメータ効率が良いことを示し、構造力学の発見のようなより複雑な推論タスクのための遺伝的プログラミングや他の文法ベースの手法よりも正確で相似なODE表現を発見する。
そこで本研究では,モデリング,システム識別,監視タスクなど,動的発見タスクにおいて触媒的役割を果たすツールを提案する。
関連論文リスト
- No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
本稿では,従来の2段階モデリングプロセスから離れることで,低次元力学系をモデル化する概念シフトを提案する。
最初に閉形式方程式を発見して解析する代わりに、我々のアプローチ、直接意味モデリングは力学系の意味表現を予測する。
私たちのアプローチは、モデリングパイプラインを単純化するだけでなく、結果のモデルの透明性と柔軟性も向上します。
論文 参考訳(メタデータ) (2025-01-30T18:36:48Z) - Reconstruction of dynamic systems using genetic algorithms with dynamic search limits [0.0]
時系列データを用いて動的システムの制御方程式を推定するために進化的計算手法が提案される。
本研究の主な貢献は、最小限のコントリビューションを持つ用語を除去するための遺伝的アルゴリズムの適切な修正と、局所的なオプティマから逃れるメカニズムである。
その結果,0.22未満の積分正方形誤差と,全系に対して0.99のR-二乗決定係数を用いて再構成を行った。
論文 参考訳(メタデータ) (2024-12-03T22:58:25Z) - SINDyG: Sparse Identification of Nonlinear Dynamical Systems from Graph-Structured Data [0.27624021966289597]
グラフ構造化データ(SINDyG)から動的システムのスパース同定法を開発した。
SINDyGはネットワーク構造をスパース回帰に組み込んで、基礎となるネットワーク力学を説明するモデルパラメータを識別する。
本実験は, ネットワーク力学の精度向上と簡易性を検証した。
論文 参考訳(メタデータ) (2024-09-02T17:51:37Z) - Learning System Dynamics without Forgetting [60.08612207170659]
本研究では,CDL(Continuous Dynamics Learning)の問題,タスク構成の検証,既存手法の適用性について検討する。
本稿では、LG-ODEとサブネットワーク学習の長所をモデムスイッチングモジュールと統合したモードスイッチンググラフODE(MS-GODE)モデルを提案する。
CDLのための生体動態システムの新しいベンチマーク、Bio-CDLを構築し、異なるダイナミクスを持つ多様なシステムを特徴付ける。
論文 参考訳(メタデータ) (2024-06-30T14:55:18Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - PGODE: Towards High-quality System Dynamics Modeling [40.76121531452706]
本稿では,エージェントが相互に相互作用して動作に影響を与えるマルチエージェント力学系をモデル化する問題について検討する。
最近の研究では、主に幾何学グラフを用いてこれらの相互相互作用を表現し、グラフニューラルネットワーク(GNN)によって捉えられている。
本稿では,プロトタイプグラフODE(Prototypeal Graph ODE)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-11-11T12:04:47Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
本研究では,高次元経験データから力学系を学習する手法を提案する。
我々は、システムの複数の異なるインスタンスからデータが利用できる設定に焦点を当てる。
我々は、単純な理論的分析と、合成および実世界のデータセットに関する広範な実験を通して行動を研究する。
論文 参考訳(メタデータ) (2023-06-21T07:52:07Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization [77.34726150561087]
本稿では,スケーラブルな機械学習フレームワークである移動水平最適化(DySMHO)による動的システムの発見について紹介する。
DySMHOは、基底関数の大きな辞書から基礎となる支配方程式を逐次学習する。
標準非線形力学系の例は、DySMHOが規則を正確に回復できることを示すために用いられる。
論文 参考訳(メタデータ) (2021-07-30T20:35:03Z) - Physics-informed learning of governing equations from scarce data [14.95055620484844]
本研究は, 偏微分方程式(PDE)を, 希少かつノイズの多い表現データから検出する物理インフォームド・ディープラーニング・フレームワークを提案する。
本手法の有効性とロバスト性は, 数値的にも実験的にも, 種々のPDEシステムの発見において実証される。
結果として得られる計算フレームワークは、実用的な応用における閉形式モデル発見の可能性を示している。
論文 参考訳(メタデータ) (2020-05-05T22:13:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。