論文の概要: CP-PINNs: Changepoints Detection in PDEs using Physics Informed Neural
Networks with Total-Variation Penalty
- arxiv url: http://arxiv.org/abs/2208.08626v2
- Date: Thu, 11 Jan 2024 02:20:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-13 04:28:48.499669
- Title: CP-PINNs: Changepoints Detection in PDEs using Physics Informed Neural
Networks with Total-Variation Penalty
- Title(参考訳): CP-PINN:物理情報ニューラルネットワークによるPDEの変化点検出
- Authors: Zhikang Dong, Pawel Polak
- Abstract要約: 本稿では,パラメータに未知な変化点が存在する場合,物理情報ニューラルネットワーク(PINN)が正しい部分微分方程式(PDE)のダイナミクスを推定できないことを示す。
本稿では,PDEの正確な検出と検出のために,PINNとトータル変量ペナルティを統合した新しいCP-PINNモデルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The paper shows that Physics-Informed Neural Networks (PINNs) can fail to
estimate the correct Partial Differential Equations (PDEs) dynamics in cases of
unknown changepoints in the parameters. To address this, we propose a new
CP-PINNs model which integrates PINNs with Total-Variation penalty for accurate
changepoints detection and PDEs discovery. In order to optimally combine the
tasks of model fitting, PDEs discovery, and changepoints detection, we develop
a new meta-learning algorithm that exploits batch learning to dynamically
refines the optimization objective when moving over the consecutive batches of
the data. Empirically, in case of changepoints in the dynamics, our approach
demonstrates accurate parameter estimation and model alignment, and in case of
no changepoints in the data, it converges numerically to the solution from the
original PINNs model.
- Abstract(参考訳): 本稿では,パラメータに未知な変化点が存在する場合,物理情報ニューラルネットワーク(PINN)が正しい部分微分方程式(PDE)のダイナミクスを推定できないことを示す。
そこで本研究では,PINNと全変量ペナルティを統合した新しいCP-PINNモデルを提案する。
モデルフィッティング, PDE 探索, 変更点検出のタスクを最適に組み合わせるために, バッチ学習を利用した新しいメタ学習アルゴリズムを開発し, 連続するデータのバッチを移動する際の最適化目標を動的に洗練する。
経験的に、ダイナミクスにおける変化点の場合、このアプローチは正確なパラメータ推定とモデルのアライメントを示し、データに変化点がない場合、元のピンズモデルから解に数値的に収束する。
関連論文リスト
- RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法として広く応用されている。
本稿では,地域最適化としての新たな訓練パラダイムを提案し,理論的に検討する。
実践的なトレーニングアルゴリズムであるRerea Optimized PINN(RoPINN)は、この新しいパラダイムからシームレスに派生している。
論文 参考訳(メタデータ) (2024-05-23T09:45:57Z) - Learning solutions of parametric Navier-Stokes with physics-informed
neural networks [0.3989223013441816]
パラメトリックナビエ・ストークス方程式(NSE)の解関数の学習にPIN(Palformed-Informed Neural Networks)を利用する。
パラメータのパラメータを座標とともにPINの入力とみなし、パラメータのインスタンスに対するパラメトリックPDESの数値解に基づいてPINを訓練する。
提案手法は, 解関数を学習するPINNモデルを最適化し, 流量予測が質量・運動量の保存則と一致していることを確認する。
論文 参考訳(メタデータ) (2024-02-05T16:19:53Z) - Reduced-order modeling for parameterized PDEs via implicit neural
representations [4.135710717238787]
我々は、パラメータ化偏微分方程式(PDE)を効率的に解くために、新しいデータ駆動型低次モデリング手法を提案する。
提案フレームワークは、PDEを符号化し、パラメトリゼーションニューラルネットワーク(PNODE)を用いて、複数のPDEパラメータを特徴とする潜時ダイナミクスを学習する。
我々は,提案手法を大規模なレイノルズ数で評価し,O(103)の高速化と,基底真理値に対する1%の誤差を得る。
論文 参考訳(メタデータ) (2023-11-28T01:35:06Z) - Grad-Shafranov equilibria via data-free physics informed neural networks [0.0]
PINNはいくつかの異なる境界条件でGrad-Shafranov方程式を正確かつ効果的に解くことができることを示す。
パラメータ化PINNフレームワークを導入し、入力空間を圧力、アスペクト比、伸長、三角度などの変数を含むように拡張する。
論文 参考訳(メタデータ) (2023-11-22T16:08:38Z) - Lie Point Symmetry and Physics Informed Networks [59.56218517113066]
本稿では、損失関数を用いて、PINNモデルが基礎となるPDEを強制しようとするのと同じように、リー点対称性をネットワークに通知するロス関数を提案する。
我々の対称性の損失は、リー群の無限小生成元がPDE解を保存することを保証する。
実験により,PDEのリー点対称性による誘導バイアスはPINNの試料効率を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2023-11-07T19:07:16Z) - PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks [22.39904196850583]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)の数値解を近似するための有望なディープラーニングフレームワークとして登場した。
我々は,この制限に対処するために,新しいTransformerベースのフレームワークであるPINNsFormerを紹介した。
PINNsFormerは、PINNの障害モードや高次元PDEなど、様々なシナリオにおいて優れた一般化能力と精度を実現する。
論文 参考訳(メタデータ) (2023-07-21T18:06:27Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Physics-Informed Neural Network Method for Solving One-Dimensional
Advection Equation Using PyTorch [0.0]
PINNのアプローチは、最適化の強い制約としてPDEを尊重しながらニューラルネットワークのトレーニングを可能にします。
標準的な小規模循環シミュレーションでは、従来のアプローチは乱流拡散モデルの効果とほぼ同じ大きさの擬似拡散効果を組み込むことが示されている。
テストされた全てのスキームのうち、ピンズ近似のみが結果を正確に予測した。
論文 参考訳(メタデータ) (2021-03-15T05:39:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。