論文の概要: Reusability Report: Comparing gradient descent and monte carlo tree
search optimization of quantum annealing schedules
- arxiv url: http://arxiv.org/abs/2210.03411v1
- Date: Fri, 7 Oct 2022 08:59:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-23 08:15:45.021589
- Title: Reusability Report: Comparing gradient descent and monte carlo tree
search optimization of quantum annealing schedules
- Title(参考訳): リユースビリティレポート:量子アニールスケジュールの勾配降下とモンテカルロ木探索の最適化の比較
- Authors: Matteo M. Wauters and Evert van Nieuwenburg
- Abstract要約: 本稿では,本手法の再利用可能性について報告する。
Max-Cut問題に関するさらなるベンチマークを追加します。
この論文はChenらによって書かれた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We provide a reusability report of the method presented by Chen et al. in
"Optimizing quantum annealing schedules with Monte Carlo tree search enhanced
with neural networks" and add further benchmarks on Max-Cut problems.
- Abstract(参考訳): 我々は,Chenらによる「モンテカルロ木探索をニューラルネットワークで強化した量子アニーリングスケジュールの最適化」における手法の再利用可能性について報告し,Max-Cut問題に関するさらなるベンチマークを追加する。
関連論文リスト
- Optimized Monte Carlo Tree Search for Enhanced Decision Making in the FrozenLake Environment [0.0]
Monte Carlo Tree Search (MCTS) は複雑な意思決定問題を解決する強力なアルゴリズムである。
本稿では,古典的強化学習課題であるFrozenLake環境に適用したMCTS実装を提案する。
論文 参考訳(メタデータ) (2024-09-25T05:04:53Z) - LiteSearch: Efficacious Tree Search for LLM [70.29796112457662]
本研究では,動的ノード選択とノードレベルの探索予算を備えた新しいガイド付き木探索アルゴリズムを提案する。
GSM8KおよびTabMWPデータセットを用いて行った実験により,本手法はベースライン法に比べて計算コストが大幅に低いことを示した。
論文 参考訳(メタデータ) (2024-06-29T05:14:04Z) - An Analysis of Quantum Annealing Algorithms for Solving the Maximum Clique Problem [49.1574468325115]
我々は、QUBO問題として表されるグラフ上の最大傾きを見つける量子D波アンナーの能力を解析する。
本稿では, 相補的な最大独立集合問題に対する分解アルゴリズムと, ノード数, 傾き数, 密度, 接続率, 解サイズの他のノード数に対する比を制御するグラフ生成アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T04:40:05Z) - On the Computational Cost of Stochastic Security [0.0]
本研究では, モンテカルロシミュレーションにおいて, 独立分類器ネットワークの対向ロバスト性および校正スコアを向上させるために, 訓練されたEMMを用いた拡散過程をシミュレーションする手法について考察する。
本研究は, 連続エネルギーポテンシャルからギブズサンプリングを効率よく行うために, 量子・古典ハードウェアとソフトウェアを新たに実現し, モデルのキャリブレーションと対角ロバスト性を向上させることを目的として, ギブズサンプリングの計算予算の増大を図った。
論文 参考訳(メタデータ) (2023-05-13T17:33:01Z) - Monte Carlo Tree Descent for Black-Box Optimization [10.698553177585973]
我々は、より高速な最適化のためにサンプルベース降下をさらに統合する方法を研究する。
我々は,モンテカルロ探索木の拡張手法を,頂点における新しい降下法を用いて設計する。
提案アルゴリズムは,多くの挑戦的ベンチマーク問題において,最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-11-01T22:45:10Z) - Evaluating the Convergence of Tabu Enhanced Hybrid Quantum Optimization [58.720142291102135]
本稿では,量子ハードウェア上での最適化問題解決に有用な Tabu Enhanced Hybrid Quantum Optimization メタヒューリスティック手法を提案する。
提案手法の理論的収束を,イジングモデルに基づくタブ状態を保存する対象の衝突の観点から考察する。
論文 参考訳(メタデータ) (2022-09-05T07:23:03Z) - Quantitative approach to Grover's quantum walk on graphs [62.997667081978825]
グラフ上の連続時間量子ウォークに着目したGroverの探索アルゴリズムについて検討する。
関連する量子ウォークに便利なグラフトポロジーを見つける代わりに、グラフトポロジーを修正し、ラプラシアンを基礎とするグラフを変化させる。
論文 参考訳(メタデータ) (2022-07-04T19:33:06Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - CITS: Coherent Ising Tree Search Algorithm Towards Solving Combinatorial
Optimization Problems [0.0]
本稿では、マルコフ連鎖からSAに基づく奥行き制限木への探索空間の拡大による探索アルゴリズムを提案する。
それぞれのイテレーションにおいて、このアルゴリズムは、先を見据えて、木に沿って探索することで、実現可能な探索空間内で最高の準最適解を選択する」。
以上の結果から,IsingのNP最適化問題に対する高次木探索戦略は,より少ないエポックの範囲で解決可能であることが示唆された。
論文 参考訳(メタデータ) (2022-03-09T10:07:26Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
有名な最小二乗モンテカルロ (LSM) アルゴリズムは、線形最小二乗回帰とモンテカルロシミュレーションを組み合わせることで、最適停止理論の問題を解決する。
プロセスへの量子アクセス、最適な停止時間を計算するための量子回路、モンテカルロの量子技術に基づく量子LSMを提案する。
論文 参考訳(メタデータ) (2021-11-30T12:21:41Z) - Bayesian optimization for backpropagation in Monte-Carlo tree search [1.52292571922932]
バックプロパゲーション戦略を改善するための従来の試みを一般化した,Softmax MCTS と Monotone MCTS の2つの手法を提案する。
提案手法が従来の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-01-25T14:33:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。