論文の概要: Stability of Entropic Wasserstein Barycenters and application to random
geometric graphs
- arxiv url: http://arxiv.org/abs/2210.10535v1
- Date: Wed, 19 Oct 2022 13:17:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 16:06:52.872787
- Title: Stability of Entropic Wasserstein Barycenters and application to random
geometric graphs
- Title(参考訳): エントロピックワッサーシュタインarycentersの安定性とランダム幾何グラフへの応用
- Authors: Marc Theveneau, Nicolas Keriven
- Abstract要約: ワッサーシュタイン・バリーセンタ(Wasserstein Barycenters、WB)は、最適輸送の理論に由来するバリーセンタの概念である。
離散化されたメッシュ上のWBが基底多様体の幾何学とどのように関係するかを示す。
- 参考スコア(独自算出の注目度): 8.7314407902481
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As interest in graph data has grown in recent years, the computation of
various geometric tools has become essential. In some area such as mesh
processing, they often rely on the computation of geodesics and shortest paths
in discretized manifolds. A recent example of such a tool is the computation of
Wasserstein barycenters (WB), a very general notion of barycenters derived from
the theory of Optimal Transport, and their entropic-regularized variant. In
this paper, we examine how WBs on discretized meshes relate to the geometry of
the underlying manifold. We first provide a generic stability result with
respect to the input cost matrices. We then apply this result to random
geometric graphs on manifolds, whose shortest paths converge to geodesics,
hence proving the consistency of WBs computed on discretized shapes.
- Abstract(参考訳): 近年、グラフデータへの関心が高まるにつれて、様々な幾何学的ツールの計算が重要になっている。
メッシュ処理のような領域では、しばしば離散化された多様体における測地線と最短経路の計算に依存する。
そのようなツールの最近の例は、ワッサーシュタイン・バリセンタ(英語版)(WB)の計算であり、これは最適輸送の理論に由来する非常に一般的なバリセンタの概念であり、そのエントロピック-正則化変種である。
本稿では,離散メッシュ上の wb が基底多様体の幾何学とどのように関係しているかを考察する。
まず, 入力コスト行列に関して, 一般的な安定性結果を与える。
この結果は、最短経路が測地線に収束する多様体上のランダムな幾何グラフに適用し、したがって離散化された形状で計算された WBs の整合性を証明する。
関連論文リスト
- Ironing the Graphs: Toward a Correct Geometric Analysis of Large-Scale Graphs [2.2557806157585834]
古典的な埋め込み技法は、多様体の各点における曲率を見逃すので、正確な幾何学的解釈をもたらすことはできない。
本稿では,離散リッチフローに基づく離散リッチフローグラフ埋め込み(dRfge)を提案する。
この論文の主な貢献は、離散リッチフローの一定曲率とエッジ上の安定距離メトリクスへの収束性を初めて証明したことである。
論文 参考訳(メタデータ) (2024-07-31T13:47:53Z) - Information-Theoretic Thresholds for Planted Dense Cycles [52.076657911275525]
本研究では,社会科学や生物科学においてユビキタスな小世界ネットワークのランダムグラフモデルについて検討する。
植え込み高密度サイクルの検出と回復の両面において、情報理論の閾値を$n$, $tau$、エッジワイド信号対雑音比$lambda$で特徴づける。
論文 参考訳(メタデータ) (2024-02-01T03:39:01Z) - Towards Efficient Time Stepping for Numerical Shape Correspondence [55.2480439325792]
偏微分方程式(PDE)に基づく手法が確立されており、例えば古典的な熱核シグネチャを含む。
本研究の目的は,形状解析の文脈における時間積分の手法の有用な性質を特定できるかどうかを評価することである。
論文 参考訳(メタデータ) (2023-12-21T13:40:03Z) - The Fisher-Rao geometry of CES distributions [50.50897590847961]
Fisher-Rao情報幾何学は、ツールを微分幾何学から活用することができる。
楕円分布の枠組みにおけるこれらの幾何学的ツールの実用的利用について述べる。
論文 参考訳(メタデータ) (2023-10-02T09:23:32Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
本研究では, 多様体の曲率に依存しないステップサイズが, 曲率非依存かつ直線的最終点収束率を達成することを示す。
我々の知る限りでは、曲率非依存率や/または最終点収束の可能性はこれまでに検討されていない。
論文 参考訳(メタデータ) (2023-06-29T01:20:44Z) - Geometric Scattering on Measure Spaces [12.0756034112778]
測度空間上での幾何散乱の一般統一モデルを導入する。
未知多様体をランダムにサンプリングして得られる有限測度空間を考える。
本稿では, 関連するグラフ散乱変換が基礎多様体上の散乱変換を近似するデータ駆動グラフを構築するための2つの方法を提案する。
論文 参考訳(メタデータ) (2022-08-17T22:40:09Z) - Entropic Optimal Transport in Random Graphs [8.7314407902481]
グラフ解析において、古典的なタスクはノード間の(グループの)類似性の計算によって構成される。
潜在空間におけるノード群間の距離を連続的に推定することは可能であることを示す。
論文 参考訳(メタデータ) (2022-01-11T13:52:34Z) - q-Paths: Generalizing the Geometric Annealing Path using Power Means [51.73925445218366]
我々は、幾何学と算術の混合を特別なケースとして含むパスのファミリーである$q$-pathsを紹介した。
幾何経路から離れた小さな偏差がベイズ推定に経験的利得をもたらすことを示す。
論文 参考訳(メタデータ) (2021-07-01T21:09:06Z) - On Riemannian Optimization over Positive Definite Matrices with the
Bures-Wasserstein Geometry [45.1944007785671]
本稿では,Bres-Wasserstein (BW) 幾何を一般的な Affine-Invariant (AI) 幾何を用いて解析する。
我々は、AIメトリックの二次的依存とは対照的に、BWメトリックがSPD行列に線形依存しているという観測に基づいて構築する。
BW幾何学は非負の曲率を持ち、非正の曲線を持つAI幾何に対するアルゴリズムの収束率をさらに向上させることを示す。
論文 参考訳(メタデータ) (2021-06-01T07:39:19Z) - Bayesian Quadrature on Riemannian Data Manifolds [79.71142807798284]
データに固有の非線形幾何学構造をモデル化する原則的な方法が提供される。
しかし、これらの演算は通常計算的に要求される。
特に、正規法則上の積分を数値計算するためにベイズ二次(bq)に焦点を当てる。
先行知識と活発な探索手法を両立させることで,BQは必要な評価回数を大幅に削減できることを示す。
論文 参考訳(メタデータ) (2021-02-12T17:38:04Z) - Computationally Tractable Riemannian Manifolds for Graph Embeddings [10.420394952839242]
我々は、ある曲面リーマン空間におけるグラフ埋め込みを学習し、最適化する方法を示す。
我々の結果は、機械学習パイプラインにおける非ユークリッド埋め込みの利点の新たな証拠として役立ちます。
論文 参考訳(メタデータ) (2020-02-20T10:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。