論文の概要: Log-density gradient covariance and automatic metric tensors for Riemann
manifold Monte Carlo methods
- arxiv url: http://arxiv.org/abs/2211.01746v1
- Date: Thu, 3 Nov 2022 12:22:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-04 14:11:19.789452
- Title: Log-density gradient covariance and automatic metric tensors for Riemann
manifold Monte Carlo methods
- Title(参考訳): リーマン多様体モンテカルロ法による対数密度勾配共分散と自動計量テンソル
- Authors: Tore Selland Kleppe
- Abstract要約: 計量テンソルは、この提案された対称正の半有限対数密度勾配共分散行列から構築される。
提案手法は高度に自動化されており、問題となっているモデルに関連付けられたあらゆる空間を活用できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A metric tensor for Riemann manifold Monte Carlo particularly suited for
non-linear Bayesian hierarchical models is proposed. The metric tensor is built
from here proposed symmetric positive semidefinite log-density gradient
covariance (LGC) matrices. The LGCs measure the joint information content and
dependence structure of both a random variable and the parameters of said
variable. The proposed methodology is highly automatic and allows for
exploitation of any sparsity associated with the model in question. When
implemented in conjunction with a Riemann manifold variant of the recently
proposed numerical generalized randomized Hamiltonian Monte Carlo processes,
the proposed methodology is highly competitive, in particular for the more
challenging target distributions associated with Bayesian hierarchical models.
- Abstract(参考訳): 特に非線形ベイズ階層モデルに適したリーマン多様体モンテカルロの計量テンソルを提案する。
計量テンソルは、対称正半定値対数密度勾配共分散(LGC)行列から構築される。
LGCは、ランダム変数と当該変数のパラメータの両方の結合情報内容と依存構造を測定する。
提案手法は高度に自動的であり、問題のモデルに付随する任意のスパーシティを活用できる。
最近提案された数値一般化ランダム化ハミルトニアンモンテカルロ過程のリーマン多様体の変種と組み合わせて実装された場合、提案手法は特にベイズ的階層モデルに関連するより挑戦的な対象分布に対して高い競争力を持つ。
関連論文リスト
- Understanding Matrix Function Normalizations in Covariance Pooling through the Lens of Riemannian Geometry [63.694184882697435]
グローバル共分散プーリング(GCP)は、高レベルの表現の2階統計を利用して、ディープニューラルネットワーク(DNN)の性能を向上させることが実証されている。
論文 参考訳(メタデータ) (2024-07-15T07:11:44Z) - Convex Parameter Estimation of Perturbed Multivariate Generalized
Gaussian Distributions [18.95928707619676]
本稿では,MGGDパラメータの確立された特性を持つ凸定式化を提案する。
提案するフレームワークは, 精度行列, 平均, 摂動の様々な正規化を組み合わせ, 柔軟である。
実験により, 平均ベクトルパラメータに対して, 同様の性能でより正確な精度と共分散行列推定を行うことができた。
論文 参考訳(メタデータ) (2023-12-12T18:08:04Z) - Monte Carlo inference for semiparametric Bayesian regression [5.488491124945426]
本稿では、未知の変換とすべての回帰モデルパラメータの結合後部推論のための単純で汎用的で効率的な戦略を提案する。
これは(1)複数のモデルの不特定性を含む一般条件下での合同後続一貫性を提供し、(2)変換に対する効率的なモンテカルロ(マルコフ連鎖でないモンテカルロ)の推論と重要な特殊ケースに対する全てのパラメータを提供する。
論文 参考訳(メタデータ) (2023-06-08T18:42:42Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
パラメータ、対称性、モダリティなどの分布の性質の制御は、フレキシブルな分布の族を生み出す。
変動型オートエンコーダと潜在空間ネットワークモデル内で提案した分布を利用して,我々のアプローチを実証的に検証する。
論文 参考訳(メタデータ) (2022-04-20T21:25:21Z) - Scalable mixed-domain Gaussian process modeling and model reduction for longitudinal data [5.00301731167245]
混合領域共分散関数に対する基底関数近似スキームを導出する。
我々は,GPモデルの精度をランタイムのごく一部で正確に近似できることを示す。
また、より小さく、より解釈可能なモデルを得るためのスケーラブルなモデルリダクションワークフローを実証する。
論文 参考訳(メタデータ) (2021-11-03T04:47:37Z) - Machine Learning and Variational Algorithms for Lattice Field Theory [1.198562319289569]
格子量子場論の研究において、格子理論を定義するパラメータは連続体物理学にアクセスする臨界性に向けて調整されなければならない。
経路積分の領域に適用される輪郭変形に基づいてモンテカルロ推定器を「変形」する手法を提案する。
我々は,フローベースMCMCが臨界減速を緩和し,オブザーシフォールドが原理的応用のばらつきを指数関数的に低減できることを実証した。
論文 参考訳(メタデータ) (2021-06-03T16:37:05Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
我々は、ニューラルネットワーク(NN)モデルの一般化精度を予測するために、コンテストで公に利用可能にされたモデルのコーパスを分析する。
メトリクスが全体としてよく機能するが、データのサブパーティションではあまり機能しない。
本稿では,データに依存しない2つの新しい形状指標と,一連のNNのテスト精度の傾向を予測できるデータ依存指標を提案する。
論文 参考訳(メタデータ) (2021-06-01T19:19:49Z) - Geometric variational inference [0.0]
変分推論 (VI) またはマルコフ・チェイン・モンテカルロ (MCMC) 技術は点推定を超えて用いられる。
本研究は,リーマン幾何学とフィッシャー情報量に基づく幾何学的変分推論(geoVI)を提案する。
変換によって誘導される座標系で表される分布は、特に単純であり、正確な変分近似を可能にする。
論文 参考訳(メタデータ) (2021-05-21T17:18:50Z) - Bayesian Quadrature on Riemannian Data Manifolds [79.71142807798284]
データに固有の非線形幾何学構造をモデル化する原則的な方法が提供される。
しかし、これらの演算は通常計算的に要求される。
特に、正規法則上の積分を数値計算するためにベイズ二次(bq)に焦点を当てる。
先行知識と活発な探索手法を両立させることで,BQは必要な評価回数を大幅に削減できることを示す。
論文 参考訳(メタデータ) (2021-02-12T17:38:04Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
我々は高次元単一インデックスモデルのための正規化自由アルゴリズムを設計する。
暗黙正則化現象の理論的保証を提供する。
論文 参考訳(メタデータ) (2020-07-16T13:27:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。