論文の概要: Learning Integrable Dynamics with Action-Angle Networks
- arxiv url: http://arxiv.org/abs/2211.15338v1
- Date: Thu, 24 Nov 2022 17:37:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 20:44:45.936085
- Title: Learning Integrable Dynamics with Action-Angle Networks
- Title(参考訳): アクションアングルネットワークによる学習可積分ダイナミクス
- Authors: Ameya Daigavane, Arthur Kosmala, Miles Cranmer, Tess Smidt, Shirley Ho
- Abstract要約: アクションアングルネットワークは入力座標から、システムの進化が線形であるアクションアングル空間への非線形変換を学習する。
従来の学習シミュレータとは異なり、Action-Angle Networksは高階数値積分法を一切使わない。
- 参考スコア(独自算出の注目度): 1.2999518604217852
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning has become increasingly popular for efficiently modelling
the dynamics of complex physical systems, demonstrating a capability to learn
effective models for dynamics which ignore redundant degrees of freedom.
Learned simulators typically predict the evolution of the system in a
step-by-step manner with numerical integration techniques. However, such models
often suffer from instability over long roll-outs due to the accumulation of
both estimation and integration error at each prediction step. Here, we propose
an alternative construction for learned physical simulators that are inspired
by the concept of action-angle coordinates from classical mechanics for
describing integrable systems. We propose Action-Angle Networks, which learn a
nonlinear transformation from input coordinates to the action-angle space,
where evolution of the system is linear. Unlike traditional learned simulators,
Action-Angle Networks do not employ any higher-order numerical integration
methods, making them extremely efficient at modelling the dynamics of
integrable physical systems.
- Abstract(参考訳): 機械学習は、複雑な物理システムのダイナミクスを効率的にモデル化するために人気が高まっており、冗長な自由度を無視したダイナミクスの効果的なモデルを学ぶ能力を示している。
学習シミュレータは通常、数値積分技術を用いてステップバイステップでシステムの進化を予測する。
しかしながら、予測ステップ毎に推定と統合エラーが蓄積されるため、このようなモデルは長いロールアウトよりも不安定になることが多い。
本稿では,古典力学のアクションアングル座標の概念から着想を得た,学習用物理シミュレータの代替構成を提案する。
本稿では,入力座標から動作角空間への非線形変換を学習するアクション・アングル・ネットワークを提案する。
従来の学習シミュレータとは異なり、アクションアングルネットワークは高階数値積分法を採用しておらず、統合可能な物理システムのダイナミクスをモデル化するのに非常に効率的である。
関連論文リスト
- Learning System Dynamics without Forgetting [60.08612207170659]
未知の力学を持つ系の軌道予測は、物理学や生物学を含む様々な研究分野において重要である。
本稿では,モードスイッチンググラフODE (MS-GODE) の新たなフレームワークを提案する。
生体力学の異なる多様な系を特徴とする生体力学システムの新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-30T14:55:18Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
本稿では,時系列データの非定常および非線形の複雑なダイナミクスを表現した新しい分解力学系モデルを提案する。
我々のモデルは辞書学習によって訓練され、最近の結果を利用してスパースベクトルを時間とともに追跡する。
連続時間と離散時間の両方の指導例において、我々のモデルは元のシステムによく近似できることを示した。
論文 参考訳(メタデータ) (2022-06-07T02:25:38Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Multiscale Simulations of Complex Systems by Learning their Effective
Dynamics [10.52078600986485]
本稿では,大規模シミュレーションをブリッジし,注文モデルを削減し,実効ダイナミクスを学習するシステムフレームワークを提案する。
LEDは複雑なシステムの正確な予測に新しい強力なモダリティを提供する。
LEDは化学から流体力学に至るまでのシステムに適用でき、計算の労力を最大2桁まで削減できる。
論文 参考訳(メタデータ) (2020-06-24T02:35:51Z) - Accurately Solving Physical Systems with Graph Learning [22.100386288615006]
本稿では,グラフネットワークを持つ物理系に対する反復解法を高速化する新しい手法を提案する。
エンド・ツー・エンドで物理システムを学習することを目的とした既存の手法とは異なり、我々のアプローチは長期的な安定性を保証する。
本手法は,従来の反復解法の性能を向上させる。
論文 参考訳(メタデータ) (2020-06-06T15:48:34Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
状態空間全体にわたって安定することが保証される力学系を学習するためのアプローチを提案する。
このような学習システムは、単純な力学系をモデル化することができ、複雑な力学を学習するために追加の深層生成モデルと組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。