論文の概要: Nonlinear controllability and function representation by neural
stochastic differential equations
- arxiv url: http://arxiv.org/abs/2212.00896v1
- Date: Thu, 1 Dec 2022 22:25:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 17:41:55.607828
- Title: Nonlinear controllability and function representation by neural
stochastic differential equations
- Title(参考訳): 神経確率微分方程式による非線形制御性と関数表現
- Authors: Tanya Veeravalli and Maxim Raginsky
- Abstract要約: ニューラルSDEが初期状態の非線形機能を実現する能力を示す。
このステアリングを達成するのに必要な最小限の制御労力について、上下境界を導出する。
- 参考スコア(独自算出の注目度): 11.764601181046496
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There has been a great deal of recent interest in learning and approximation
of functions that can be expressed as expectations of a given nonlinearity with
respect to its random internal parameters. Examples of such representations
include "infinitely wide" neural nets, where the underlying nonlinearity is
given by the activation function of an individual neuron. In this paper, we
bring this perspective to function representation by neural stochastic
differential equations (SDEs). A neural SDE is an It\^o diffusion process whose
drift and diffusion matrix are elements of some parametric families. We show
that the ability of a neural SDE to realize nonlinear functions of its initial
condition can be related to the problem of optimally steering a certain
deterministic dynamical system between two given points in finite time. This
auxiliary system is obtained by formally replacing the Brownian motion in the
SDE by a deterministic control input. We derive upper and lower bounds on the
minimum control effort needed to accomplish this steering; these bounds may be
of independent interest in the context of motion planning and deterministic
optimal control.
- Abstract(参考訳): 近年、ランダムな内部パラメータに関して与えられた非線形性の期待として表現できる関数の学習と近似に多くの関心が寄せられている。
そのような表現の例としては、「無限に広い」ニューラルネットワークがあり、基礎となる非線形性は個々のニューロンの活性化関数によって与えられる。
本稿では、この視点を神経確率微分方程式(SDE)による関数表現に適用する。
神経SDEは、ドリフトと拡散行列がいくつかのパラメトリックファミリーの要素である It\^o 拡散過程である。
ニューラルSDEが初期状態の非線形関数を実現する能力は、有限時間で与えられた2つの点間の決定論的力学系を最適に操る問題と関連していることを示す。
この補助システムは、SDEにおけるブラウン運動を決定論的制御入力で正式に置き換えることにより得られる。
これらの境界は、運動計画と決定論的最適制御の文脈において独立した関心を持つかもしれない。
関連論文リスト
- Diffusion models as probabilistic neural operators for recovering unobserved states of dynamical systems [49.2319247825857]
拡散に基づく生成モデルは、ニューラル演算子に好適な多くの特性を示す。
本稿では,複数のタスクに適応可能な単一モデルを,トレーニング中のタスク間で交互に学習することを提案する。
論文 参考訳(メタデータ) (2024-05-11T21:23:55Z) - Latent Neural PDE Solver: a reduced-order modelling framework for
partial differential equations [6.173339150997772]
より粗い離散化を伴う潜在空間における系の力学を学習することを提案する。
非線形オートエンコーダは、まずシステムの全順序表現をメッシュ再現空間に投影するように訓練される。
実時間空間で動作するニューラルPDEソルバと比較して, 精度と効率が優れていることを示す。
論文 参考訳(メタデータ) (2024-02-27T19:36:27Z) - On the Identification and Optimization of Nonsmooth Superposition
Operators in Semilinear Elliptic PDEs [3.045851438458641]
原型半線形楕円偏微分方程式(PDE)の非線形部分におけるネミトスキー作用素の同定を目的とした無限次元最適化問題について検討する。
以前の研究とは対照的に、ネミトスキー作用素を誘導する関数が a-priori であることは、$H leakyloc(mathbbR)$ の要素であることが知られている。
論文 参考訳(メタデータ) (2023-06-08T13:33:20Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
線形化ラプラス近似(LLA)はベイズニューラルネットワークの構築に有効で効率的であることが示されている。
ベイズ最適化におけるLLAの有用性について検討し,その性能と柔軟性を強調した。
論文 参考訳(メタデータ) (2023-04-17T14:23:43Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Koopman neural operator as a mesh-free solver of non-linear partial differential equations [15.410070455154138]
これらの課題を克服するために,新しいニューラル演算子であるクープマンニューラル演算子(KNO)を提案する。
力学系のすべての可能な観測を統括する無限次元作用素であるクープマン作用素を近似することにより、非線型PDEファミリーの解を等価に学べる。
KNOは、従来の最先端モデルと比較して顕著なアドバンテージを示している。
論文 参考訳(メタデータ) (2023-01-24T14:10:15Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Learning stochastic dynamical systems with neural networks mimicking the
Euler-Maruyama scheme [14.436723124352817]
本稿では,SDEのパラメータを組み込みのSDE統合方式でニューラルネットワークで表現するデータ駆動手法を提案する。
このアルゴリズムは、幾何学的ブラウン運動とロレンツ-63モデルのバージョンに適用される。
論文 参考訳(メタデータ) (2021-05-18T11:41:34Z) - Probabilistic learning on manifolds constrained by nonlinear partial
differential equations for small datasets [0.0]
The Probabilistic Learning on Manifolds (PLoM) の新たな拡張について紹介する。
これにより、幅広い非線形境界値問題に対する解を合成することができる。
3つのアプリケーションが提示されます。
論文 参考訳(メタデータ) (2020-10-27T14:34:54Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。