論文の概要: Latent Neural PDE Solver: a reduced-order modelling framework for
partial differential equations
- arxiv url: http://arxiv.org/abs/2402.17853v1
- Date: Tue, 27 Feb 2024 19:36:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-29 17:13:09.610212
- Title: Latent Neural PDE Solver: a reduced-order modelling framework for
partial differential equations
- Title(参考訳): latent neural pde solver: 偏微分方程式のための低次モデリングフレームワーク
- Authors: Zijie Li, Saurabh Patil, Francis Ogoke, Dule Shu, Wilson Zhen, Michael
Schneier, John R. Buchanan, Jr., Amir Barati Farimani
- Abstract要約: より粗い離散化を伴う潜在空間における系の力学を学習することを提案する。
非線形オートエンコーダは、まずシステムの全順序表現をメッシュ再現空間に投影するように訓練される。
実時間空間で動作するニューラルPDEソルバと比較して, 精度と効率が優れていることを示す。
- 参考スコア(独自算出の注目度): 6.173339150997772
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks have shown promising potential in accelerating the numerical
simulation of systems governed by partial differential equations (PDEs).
Different from many existing neural network surrogates operating on
high-dimensional discretized fields, we propose to learn the dynamics of the
system in the latent space with much coarser discretizations. In our proposed
framework - Latent Neural PDE Solver (LNS), a non-linear autoencoder is first
trained to project the full-order representation of the system onto the
mesh-reduced space, then a temporal model is trained to predict the future
state in this mesh-reduced space. This reduction process simplifies the
training of the temporal model by greatly reducing the computational cost
accompanying a fine discretization. We study the capability of the proposed
framework and several other popular neural PDE solvers on various types of
systems including single-phase and multi-phase flows along with varying system
parameters. We showcase that it has competitive accuracy and efficiency
compared to the neural PDE solver that operates on full-order space.
- Abstract(参考訳): ニューラルネットワークは偏微分方程式(pdes)が支配する系の数値シミュレーションを加速する可能性を示している。
高次元の離散化フィールドで動作する多くの既存のニューラルネットワークサロゲートとは異なり、より粗い離散化を伴う潜在空間におけるシステムのダイナミクスを学習することを提案する。
提案するフレームワーク - Latent Neural PDE Solver (LNS) において、非線形オートエンコーダは、まず、システムの全順序表現をメッシュ再現空間に投影するように訓練され、その後、このメッシュ再現空間の将来の状態を予測するために時間モデルが訓練される。
この削減プロセスは、微分化に伴う計算コストを大幅に削減することにより、時間モデルのトレーニングを簡略化する。
システムパラメータの異なる単相・多相流を含む様々な種類のシステムにおいて,提案するフレームワークと他の一般的なPDE解法の性能について検討した。
実時間空間で動作するニューラルPDEソルバと比較して, 精度と効率が優れていることを示す。
関連論文リスト
- PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems [31.006807854698376]
我々は物理符号化されたメッセージパッシンググラフネットワーク(PhyMPGN)という新しいグラフ学習手法を提案する。
我々は,GNNを数値積分器に組み込んで,与えられたPDEシステムに対する時間的時間的ダイナミクスの時間的行進を近似する。
PhyMPGNは、粗い非構造メッシュ上での様々なタイプの時間的ダイナミクスを正確に予測することができる。
論文 参考訳(メタデータ) (2024-10-02T08:54:18Z) - Diffusion models as probabilistic neural operators for recovering unobserved states of dynamical systems [49.2319247825857]
拡散に基づく生成モデルは、ニューラル演算子に好適な多くの特性を示す。
本稿では,複数のタスクに適応可能な単一モデルを,トレーニング中のタスク間で交互に学習することを提案する。
論文 参考訳(メタデータ) (2024-05-11T21:23:55Z) - Pretraining Codomain Attention Neural Operators for Solving Multiphysics PDEs [85.40198664108624]
PDEを用いた多物理問題の解法として,コドメイン注意ニューラル演算子(CoDA-NO)を提案する。
CoDA-NOはコドメインやチャネル空間に沿った機能をトークン化し、複数のPDEシステムの自己教師付き学習や事前訓練を可能にする。
CoDA-NOは、データ制限のある複雑な下流タスクにおいて、既存のメソッドを36%以上上回ります。
論文 参考訳(メタデータ) (2024-03-19T08:56:20Z) - Reduced-order modeling for parameterized PDEs via implicit neural
representations [4.135710717238787]
我々は、パラメータ化偏微分方程式(PDE)を効率的に解くために、新しいデータ駆動型低次モデリング手法を提案する。
提案フレームワークは、PDEを符号化し、パラメトリゼーションニューラルネットワーク(PNODE)を用いて、複数のPDEパラメータを特徴とする潜時ダイナミクスを学習する。
我々は,提案手法を大規模なレイノルズ数で評価し,O(103)の高速化と,基底真理値に対する1%の誤差を得る。
論文 参考訳(メタデータ) (2023-11-28T01:35:06Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Neural Delay Differential Equations: System Reconstruction and Image
Classification [14.59919398960571]
我々はニューラル遅延微分方程式 (Neural Delay Differential Equations, NDDEs) という,遅延を伴う連続深度ニューラルネットワークの新しいクラスを提案する。
NODE と比較して、NDDE はより強い非線形表現能力を持つ。
我々は、合成されたデータだけでなく、よく知られた画像データセットであるCIFAR10に対しても、損失の低減と精度の向上を実現している。
論文 参考訳(メタデータ) (2023-04-11T16:09:28Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - Neural Delay Differential Equations [9.077775405204347]
ニューラル遅延微分方程式 (N Neural Delay Differential Equations, NDDEs) と呼ばれる遅延を持つ連続深層ニューラルネットワークの新しいクラスを提案する。
対応する勾配を計算するために,随伴感度法を用いて随伴の遅延ダイナミクスを得る。
この結果から,動的システムの要素をネットワーク設計に適切に表現することは,ネットワーク性能の促進に真に有益であることが判明した。
論文 参考訳(メタデータ) (2021-02-22T06:53:51Z) - Neural-PDE: A RNN based neural network for solving time dependent PDEs [6.560798708375526]
偏微分方程式 (Partial differential equation, PDE) は、科学や工学における多くの問題を研究する上で重要な役割を果たしている。
本稿では,時間依存型PDEシステムのルールを自動的に学習する,Neural-PDEと呼ばれるシーケンス深層学習フレームワークを提案する。
我々の実験では、ニューラルPDEは20時間以内のトレーニングで効率よく力学を抽出し、正確な予測を行うことができる。
論文 参考訳(メタデータ) (2020-09-08T15:46:00Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。