論文の概要: Quantum algorithm for time-dependent differential equations using Dyson series
- arxiv url: http://arxiv.org/abs/2212.03544v2
- Date: Tue, 4 Jun 2024 08:30:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 16:52:40.857446
- Title: Quantum algorithm for time-dependent differential equations using Dyson series
- Title(参考訳): ダイソン級数を用いた時間依存微分方程式の量子アルゴリズム
- Authors: Dominic W. Berry, Pedro C. S. Costa,
- Abstract要約: 誤差と微分に複雑性の対数依存を持つ時間依存線形微分方程式を解くための量子アルゴリズムを提案する。
我々の方法は、線形方程式系のダイソン級数を符号化し、最適量子線型方程式解法によって解くことである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time-dependent linear differential equations are a common type of problem that needs to be solved in classical physics. Here we provide a quantum algorithm for solving time-dependent linear differential equations with logarithmic dependence of the complexity on the error and derivative. As usual, there is an exponential improvement over classical approaches in the scaling of the complexity with the dimension, with the caveat that the solution is encoded in the amplitudes of a quantum state. Our method is to encode the Dyson series in a system of linear equations, then solve via the optimal quantum linear equation solver. Our method also provides a simplified approach in the case of time-independent differential equations.
- Abstract(参考訳): 時間依存線形微分方程式は、古典物理学において解く必要がある一般的なタイプの問題である。
ここでは、誤差と微分に複雑性の対数依存を持つ時間依存線形微分方程式を解くための量子アルゴリズムを提案する。
通常のように、次元との複雑性のスケーリングにおける古典的アプローチよりも指数関数的な改善があり、その解が量子状態の振幅で符号化されていることに注意が必要である。
我々の方法は、線形方程式系のダイソン級数を符号化し、最適量子線型方程式解法によって解くことである。
また,時間非依存微分方程式の場合の簡便なアプローチも提案する。
関連論文リスト
- A hybrid quantum solver for the Lorenz system [0.2770822269241974]
我々は,ロレンツ系を解くための古典量子ハイブリッド法を開発した。
フォワードオイラー法を用いて系を時間的に離散化し、方程式系に変換する。
本稿では,ハイブリッド法と古典的アプローチを比較し,ロレンツ系を解く数値計算結果について述べる。
論文 参考訳(メタデータ) (2024-10-20T15:20:28Z) - Solving Fractional Differential Equations on a Quantum Computer: A Variational Approach [0.1492582382799606]
本稿では, 時間-屈折偏微分方程式の解法として, 効率的な変分型量子古典アルゴリズムを提案する。
その結果, 解の忠実度は分数指数に不感であり, 勾配評価コストは時間ステップ数とともに経済的にスケールすることがわかった。
論文 参考訳(メタデータ) (2024-06-13T02:27:16Z) - Nonlinear dynamics as a ground-state solution on quantum computers [39.58317527488534]
量子ビットレジスタにおける空間と時間の両方を符号化する変分量子アルゴリズム(VQA)を提案する。
時空符号化により、1つの基底状態計算から全時間進化を得ることができる。
論文 参考訳(メタデータ) (2024-03-25T14:06:18Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
ボゾン系が環境との相互作用を含むように一般化されたとき、有限$n$で正確な対応も可能であることを示す。
離散非線形シュル「オーディンガー方程式」の形をした特定の系をより詳細に分析する。
論文 参考訳(メタデータ) (2023-02-03T19:17:37Z) - Discovering ordinary differential equations that govern time-series [65.07437364102931]
本研究では, 1つの観測解の時系列データから, スカラー自律常微分方程式(ODE)を記号形式で復元するトランスフォーマーに基づくシーケンス・ツー・シーケンス・モデルを提案する。
提案手法は, 1回に一度, ODE の大規模な事前訓練を行った後, モデルのいくつかの前方通過において, 新たに観測された解の法則を推測することができる。
論文 参考訳(メタデータ) (2022-11-05T07:07:58Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Time complexity analysis of quantum algorithms via linear
representations for nonlinear ordinary and partial differential equations [31.986350313948435]
非線形常微分方程式の解や物理観測可能性を計算するために量子アルゴリズムを構築した。
異なる数値近似から生じる量子線形系アルゴリズムと量子シミュレーション法を比較した。
論文 参考訳(メタデータ) (2022-09-18T05:50:23Z) - Time-marching based quantum solvers for time-dependent linear
differential equations [3.1952399274829775]
タイムマーチング戦略は、古典コンピュータ上の時間依存微分方程式を解く自然な戦略である。
時間マーチングに基づく量子解法は、時間ステップ数に関して指数関数的に成功確率を逸脱させる可能性があることを示す。
これは、量子線型系アルゴリズムに基づくものに代わる量子微分方程式の解法を設計する道を提供する。
論文 参考訳(メタデータ) (2022-08-14T23:49:19Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - Quantum algorithm for nonlinear differential equations [12.386348820609626]
非線形微分方程式の解に対する量子アルゴリズムを提案する。
潜在的な応用としては、ナビエ・ストークス方程式、プラズマ流体力学、疫学などがある。
論文 参考訳(メタデータ) (2020-11-12T18:42:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。