論文の概要: Tensor PCA for Factor Models
- arxiv url: http://arxiv.org/abs/2212.12981v3
- Date: Thu, 06 Mar 2025 21:58:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:20:38.767971
- Title: Tensor PCA for Factor Models
- Title(参考訳): 因子モデルのためのテンソルPCA
- Authors: Andrii Babii, Eric Ghysels, Junsu Pan,
- Abstract要約: テンソル因子モデルでは、$d$次元パネルを、階数成分の減少と慣用音の和として記述する。
強因子モデルでは、単純なテンソル主成分分析アルゴリズムが因子や負荷を推定するのに最適であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Modern empirical analysis often relies on high-dimensional panel datasets with non-negligible cross-sectional and time-series correlations. Factor models are natural for capturing such dependencies. A tensor factor model describes the $d$-dimensional panel as a sum of a reduced rank component and an idiosyncratic noise, generalizing traditional factor models for two-dimensional panels. We consider a tensor factor model corresponding to the notion of a reduced multilinear rank of a tensor. We show that for a strong factor model, a simple tensor principal component analysis algorithm is optimal for estimating factors and loadings. When the factors are weak, the convergence rate of simple TPCA can be improved with alternating least-squares iterations. We also provide inferential results for factors and loadings and propose the first test to select the number of factors. The new tools are applied to the problem of imputing missing values in a multidimensional panel of firm characteristics.
- Abstract(参考訳): 現代の経験分析は、しばしば非無視的断面積相関と時系列相関を持つ高次元パネルデータセットに依存している。
このような依存関係をキャプチャするのには、ファクターモデルが自然です。
テンソル因子モデルでは、$d$次元パネルを2次元パネルの伝統的な因子モデルを一般化し、階数成分と慣性雑音の和として記述する。
テンソルの減少多線型階数の概念に対応するテンソル因子モデルを考える。
強因子モデルでは、単純なテンソル主成分分析アルゴリズムが因子や負荷を推定するのに最適であることを示す。
因子が弱い場合には、最小二乗反復を交互に繰り返すことで、単純なTPCAの収束率を改善することができる。
また,因子および負荷に対する推論結果も提供し,因子数を選択するための最初のテストを提案する。
本手法は, 剛性多次元パネルにおける欠落値の計算問題に適用した。
関連論文リスト
- Tensor cumulants for statistical inference on invariant distributions [49.80012009682584]
我々は,PCAが信号の大きさの臨界値で計算的に困難になることを示す。
我々は、与えられた次数の不変量に対して明示的でほぼ直交的な基底を与える新しい対象の集合を定義する。
また、異なるアンサンブルを区別する新しい問題も分析できます。
論文 参考訳(メタデータ) (2024-04-29T14:33:24Z) - Quantization of Large Language Models with an Overdetermined Basis [73.79368761182998]
本稿では,嘉心表現の原理に基づくデータ量子化アルゴリズムを提案する。
以上の結果から, カシ量子化はモデル性能の競争力や優れた品質を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-04-15T12:38:46Z) - Statistical Analysis of Karcher Means for Random Restricted PSD Matrices [5.867823829398135]
本稿では,制限された正の半定値行列の多様体上の固有平均モデルについて検討し,カルチャー平均の漸近的統計解析を提供する。
アプリケーションとして,分散主成分分析アルゴリズムであるLRC-dPCAが,全サンプルPCAアルゴリズムと同じ性能を実現することを示す。
論文 参考訳(メタデータ) (2023-02-24T03:13:12Z) - Generative Principal Component Analysis [47.03792476688768]
生成的モデリング仮定を用いた主成分分析の問題点を考察する。
鍵となる仮定は、基礎となる信号は、$k$次元の入力を持つ$L$-Lipschitz連続生成モデルの範囲に近いことである。
本稿では,2次推定器を提案し,検体数として$m$の次数$sqrtfracklog Lm$の統計率を示す。
論文 参考訳(メタデータ) (2022-03-18T01:48:16Z) - When Random Tensors meet Random Matrices [50.568841545067144]
本稿では,ガウス雑音を伴う非対称次数-$d$スパイクテンソルモデルについて検討する。
検討したモデルの解析は、等価なスパイクされた対称テクシットブロック-ワイドランダム行列の解析に起因していることを示す。
論文 参考訳(メタデータ) (2021-12-23T04:05:01Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - Tensor Full Feature Measure and Its Nonconvex Relaxation Applications to
Tensor Recovery [1.8899300124593645]
完全特徴量(FFM)と呼ばれる新しいテンソル間隔尺度を提案する。
これは各次元の特徴次元を同時に記述することができ、タッカーランクとテンソルチューブランクを結びつけることができる。
FFMに基づく2つの効率的なモデルを提案し、提案モデルを解決するために2つの代替乗算器法(ADMM)アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-09-25T01:44:34Z) - Tensor Principal Component Analysis in High Dimensional CP Models [3.553493344868413]
軽度不整合条件下での理論的保証を考慮したテンソルCP分解のための新しいアルゴリズムを提案する。
複合PCAは、主成分又は特異値分解を2回施し、まずテンソルデータの展開行列に施して特異ベクトルを得る。
提案手法は, 既存の手法に比べて, 提案手法の実用的優位性を示すものである。
論文 参考訳(メタデータ) (2021-08-10T03:24:32Z) - Stochastic Approximation for Online Tensorial Independent Component
Analysis [98.34292831923335]
独立成分分析(ICA)は統計機械学習や信号処理において一般的な次元削減ツールである。
本稿では,各独立成分を推定する副産物オンライン時系列アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-28T18:52:37Z) - Robust Tensor Principal Component Analysis: Exact Recovery via
Deterministic Model [5.414544833902815]
本稿では,ロバストテンソル主成分分析法(RTPCA)を提案する。
これは最近開発されたテンソルテンソル積とテンソル特異値分解(t-SVD)に基づいている。
論文 参考訳(メタデータ) (2020-08-05T16:26:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。