論文の概要: Complex Discretization approximation for the full dynamics of
system-environment quantum models
- arxiv url: http://arxiv.org/abs/2303.06584v2
- Date: Wed, 29 Mar 2023 12:47:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-30 17:38:47.736216
- Title: Complex Discretization approximation for the full dynamics of
system-environment quantum models
- Title(参考訳): システム環境量子モデルの完全ダイナミクスに対する複素離散化近似
- Authors: H. T. Cui, Y. A. Yan, M. Qin, and X. X. Yi
- Abstract要約: 離散化近似は複素ガウス二次方程式を導入して複素平面に一般化される。
結果として得られる実効ハミルトニアンは、系の散逸ダイナミクスのために非エルミート的である。
その結果,環境中の複雑な離散モードの発生により,再帰性が大幅に圧縮できることが判明した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The method of discretization approximation for the environment in continuum
suffers from the recurrence, that makes the simulation of the open dynamics
inefficient. In order to tackle this problem, the discretization approximation
is generalized into the complex plane by introducing complex Gauss quadratures
in this paper. The resulting effective Hamiltonian is thus non-Hermitian due to
the dissipative dynamics of system. As illustrations, the open dynamics in two
exactly solvable models, dephasing model and the single-excitation open
dynamics in the generalized Aubry-Andr\'{e}-Harper model, is checked
respectively by the method. It is found that the recurrence can be compressed
greatly due to the occurrence of complex discrete modes in environment. Thus,
the open dynamics in the two models can be simulated in high efficiency and
precision.
- Abstract(参考訳): 連続体における環境の離散化近似法は再帰性に悩まされ、開放力学のシミュレーションを非効率にする。
この問題に対処するため、複素ガウス二次方程式を導入して離散化近似を複素平面に一般化する。
結果として得られる実効ハミルトニアンは、系の散逸ダイナミクスのために非エルミート的である。
図解としては、2つの完全に解決可能なモデルにおける開力学と、一般化された Aubry-Andr\'{e}-Harper モデルにおける単励起開力学をそれぞれ方法によって検証する。
その結果,環境中の複雑な離散モードの発生により,再帰性が大幅に圧縮できることが判明した。
したがって、2つのモデルのオープンダイナミクスを高い効率と精度でシミュレートすることができる。
関連論文リスト
- Reconstruction of dynamic systems using genetic algorithms with dynamic search limits [0.0]
時系列データを用いて動的システムの制御方程式を推定するために進化的計算手法が提案される。
本研究の主な貢献は、最小限のコントリビューションを持つ用語を除去するための遺伝的アルゴリズムの適切な修正と、局所的なオプティマから逃れるメカニズムである。
その結果,0.22未満の積分正方形誤差と,全系に対して0.99のR-二乗決定係数を用いて再構成を行った。
論文 参考訳(メタデータ) (2024-12-03T22:58:25Z) - Statistical Mechanics of Dynamical System Identification [2.8820361301109365]
我々はスパース方程式探索アルゴリズムを解析するための統計力学手法を開発した。
与えられたモデルの雑音を推定する閉ループ推定法を提案する。
このスパース方程式発見の観点は万能であり、他の様々な方程式発見アルゴリズムに適応することができる。
論文 参考訳(メタデータ) (2024-03-04T04:32:28Z) - Response Theory via Generative Score Modeling [0.0]
スコアベース生成モデルとGFDT(Generalized Fluctuation-Dissipation Theorem)を組み合わせた外部摂動に対する動的システムの応答解析手法を提案する。
この手法は,非ガウス統計を含むシステム応答の正確な推定を可能にする。
論文 参考訳(メタデータ) (2024-02-01T21:38:10Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
量子系の外部自由度への不可避結合は、散逸(非単体)ダイナミクスをもたらす。
本稿では,グリーン関数の(散逸的な)格子計算に基づいて,これらのシステムに対処する手法を提案する。
本手法のパワーを,複雑性を増大させる駆動散逸型ボゾン鎖のいくつかの例で説明する。
論文 参考訳(メタデータ) (2022-02-15T19:00:09Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
本稿では,機械系の古典力学に対する変分積分器と,ガウス過程の回帰による残留力学の学習の組み合わせを提案する。
我々は、既知のキネマティック制約を持つシステムへのアプローチを拡張し、予測の不確実性に関する公式な境界を提供する。
論文 参考訳(メタデータ) (2021-12-10T11:09:29Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
本研究では,異なるシミュレーション手法をハイブリダイズし,インタラクション・ピクチャー・シミュレーションの性能を向上させるフレームワークを提案する。
これらのハイブリッド化手法の物理的応用は、電気遮断において$log2 Lambda$としてゲート複雑性のスケーリングをもたらす。
力学的な制約を受けるハミルトニアンシミュレーションの一般的な問題に対して、これらの手法は、エネルギーコストを課すために使われるペナルティパラメータ$lambda$とは無関係に、クエリの複雑さをもたらす。
論文 参考訳(メタデータ) (2021-09-07T20:01:22Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z) - On dissipative symplectic integration with applications to
gradient-based optimization [77.34726150561087]
本稿では,離散化を体系的に実現する幾何学的枠組みを提案する。
我々は、シンプレクティックな非保守的、特に散逸的なハミルトン系への一般化が、制御された誤差まで収束率を維持することができることを示す。
論文 参考訳(メタデータ) (2020-04-15T00:36:49Z) - Generalized Kernel-Based Dynamic Mode Decomposition [0.0]
我々は、カーネルベースの動的モード分解と呼ばれる最近のアプローチを一般化する低階制約最適化とカーネルベースの計算に基づくアルゴリズムを考案する。
このアルゴリズムの特徴は近似精度の向上、数値シミュレーションによる証明、計算複雑性である。
論文 参考訳(メタデータ) (2020-02-11T13:50:00Z) - Analysis of Bayesian Inference Algorithms by the Dynamical Functional
Approach [2.8021833233819486]
学生自明なシナリオにおいて,大ガウス潜在変数モデルを用いて近似推論のアルゴリズムを解析する。
完全データモデルマッチングの場合、レプリカ法から派生した静的順序パラメータの知識により、効率的なアルゴリズム更新が得られる。
論文 参考訳(メタデータ) (2020-01-14T17:22:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。