論文の概要: Detecting hidden structures from a static loading experiment: topology optimization meets physics-informed neural networks
- arxiv url: http://arxiv.org/abs/2303.09280v3
- Date: Fri, 14 Feb 2025 22:20:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 17:33:50.881499
- Title: Detecting hidden structures from a static loading experiment: topology optimization meets physics-informed neural networks
- Title(参考訳): 静的負荷実験から隠れた構造を検出する:トポロジ最適化は物理インフォームドニューラルネットワークに適合する
- Authors: Saviz Mowlavi, Ken Kamrin,
- Abstract要約: 隠れた測地を識別するPINNに基づくトポロジ最適化フレームワークを提案する。
我々は,隠れた空洞と包含物の数,位置,形状を検出することによって,我々の枠組みを検証する。
本手法は,工学における幾何最適化問題を解くためのPINNの経路を開く。
- 参考スコア(独自算出の注目度): 0.1227734309612871
- License:
- Abstract: Most noninvasive imaging techniques utilize electromagnetic or acoustic waves originating from multiple locations and directions to identify hidden geometrical structures. Surprisingly, it is also possible to image hidden voids and inclusions buried within an object using a single static thermal or mechanical loading experiment by observing the response of the exposed surface of the body, but this problem is challenging to invert. Although physics-informed neural networks (PINNs) have shown promise as a simple-yet-powerful tool for problem inversion, they have not yet been applied to imaging problems with a priori unknown topology. Here, we introduce a topology optimization framework based on PINNs that identifies concealed geometries using exposed surface data from a single loading experiment, without prior knowledge of the number or types of shapes. We allow for arbitrary solution topology by representing the geometry using a material density field combined with a novel eikonal regularization technique. We validate our framework by detecting the number, locations, and shapes of hidden voids and inclusions in many example cases, in both 2D and 3D, and we demonstrate the method's robustness to noise and sparsity in the data. Our methodology opens a pathway for PINNs to solve geometry optimization problems in engineering.
- Abstract(参考訳): 多くの非侵襲イメージング技術は、複数の位置と方向から導かれる電磁波や音響波を利用して、隠れた幾何学的構造を識別する。
驚くべきことに、物体内部に隠された空洞や包含物は、物体の露出面の反応を観察することで、単一の静的熱的または機械的負荷実験によって画像化することもできるが、この問題は逆転するのは難しい。
物理インフォームドニューラルネットワーク(PINN)は、問題インバージョンのための単純なイット・パワーフル・ツールとして期待されているが、先進的な未知のトポロジを持つ画像問題にはまだ適用されていない。
本稿では,PINNをベースとしたトポロジ最適化フレームワークを提案する。このフレームワークは,1つの載荷実験から露出した表面データを用いて,その数や形状を事前に知ることなく,隠れたジオメトリを識別する。
物質密度場と新しい固有正則化手法を組み合わせることで、任意の解位相を表現できる。
本研究では, 2次元および3次元の両方において, 隠れヴォイドと包含物の個数, 位置, 形状を検知し, 本手法の有効性を実証する。
本手法は,工学における幾何最適化問題を解くためのPINNの経路を開く。
関連論文リスト
- Geometry Distributions [51.4061133324376]
本稿では,分布として幾何学をモデル化する新しい幾何学的データ表現を提案する。
提案手法では,新しいネットワークアーキテクチャを用いた拡散モデルを用いて表面点分布の学習を行う。
本研究では,多種多様な対象に対して質的かつ定量的に表現を評価し,その有効性を実証した。
論文 参考訳(メタデータ) (2024-11-25T04:06:48Z) - ParaPoint: Learning Global Free-Boundary Surface Parameterization of 3D Point Clouds [52.03819676074455]
ParaPointは、グローバルな自由境界面パラメータ化を実現するための教師なしのニューラルネットワークパイプラインである。
この研究は、グローバルマッピングと自由境界の両方を追求するニューラルポイントクラウドパラメータ化を調査する最初の試みである。
論文 参考訳(メタデータ) (2024-03-15T14:35:05Z) - Geometry-Informed Neural Networks [15.27249535281444]
幾何インフォームドニューラルネットワーク(GINN)を導入する。
GINNは、データなしで形状生成ニューラルネットワークをトレーニングするためのフレームワークである。
GINNをいくつかの検証問題と現実的な3Dエンジニアリング設計問題に適用する。
論文 参考訳(メタデータ) (2024-02-21T18:50:12Z) - Adaptive Surface Normal Constraint for Geometric Estimation from Monocular Images [56.86175251327466]
本稿では,幾何学的文脈を取り入れつつ,画像から深度や表面正規度などの測地を学習するための新しい手法を提案する。
提案手法は,入力画像に存在する幾何学的変動を符号化した幾何学的文脈を抽出し,幾何的制約と深度推定を相関付ける。
本手法は,画像から高品質な3次元形状を生成可能な密着型フレームワーク内での深度と表面の正規分布推定を統一する。
論文 参考訳(メタデータ) (2024-02-08T17:57:59Z) - Physics-informed neural networks for transformed geometries and
manifolds [0.0]
本稿では,幾何学的変分を頑健に適合させるために,PINN内に幾何変換を統合する新しい手法を提案する。
従来のPINNに対して,特に幾何学的変動下での柔軟性の向上を実証する。
提案したフレームワークは、パラメータ化されたジオメトリ上でのディープ・ニューラル演算子のトレーニングの展望を示す。
論文 参考訳(メタデータ) (2023-11-27T15:47:33Z) - Parameterization-driven Neural Surface Reconstruction for Object-oriented Editing in Neural Rendering [35.69582529609475]
本稿では,ニューラル暗黙表面を球面やポリキューブのような単純なパラメトリック領域にパラメータ化するための新しいニューラルアルゴリズムを提案する。
オブジェクトのゼロレベルセットからの前方マッピングと後方マッピングのための逆変形を用いて、オブジェクトとドメイン間の双方向の変形を計算する。
本手法の有効性を人間の頭部と人工物の画像に示す。
論文 参考訳(メタデータ) (2023-10-09T08:42:40Z) - Geometric-aware Pretraining for Vision-centric 3D Object Detection [77.7979088689944]
GAPretrainと呼ばれる新しい幾何学的事前学習フレームワークを提案する。
GAPretrainは、複数の最先端検出器に柔軟に適用可能なプラグアンドプレイソリューションとして機能する。
BEVFormer法を用いて, nuScenes val の 46.2 mAP と 55.5 NDS を実現し, それぞれ 2.7 と 2.1 点を得た。
論文 参考訳(メタデータ) (2023-04-06T14:33:05Z) - PAC-NeRF: Physics Augmented Continuum Neural Radiance Fields for
Geometry-Agnostic System Identification [64.61198351207752]
ビデオからのシステム同定(オブジェクトの物理的パラメータを推定する)への既存のアプローチは、既知のオブジェクトジオメトリを仮定する。
本研究では,オブジェクトの形状やトポロジを仮定することなく,多視点ビデオの集合から物理系を特徴付けるパラメータを同定することを目的とする。
マルチビュービデオから高ダイナミックな物体の未知の幾何学的パラメータと物理的パラメータを推定するために,Physics Augmented Continuum Neural Radiance Fields (PAC-NeRF)を提案する。
論文 参考訳(メタデータ) (2023-03-09T18:59:50Z) - Normal Transformer: Extracting Surface Geometry from LiDAR Points Enhanced by Visual Semantics [7.507853813361308]
本稿では,LiDARとカメラセンサから得られた3次元点雲と2次元カラー画像を利用して表面正規化を行うマルチモーダル手法を提案する。
本稿では,視覚的意味論と3次元幾何学的情報を巧みに融合した,トランスフォーマーに基づくニューラルネットワークアーキテクチャを提案する。
交通シーンを模倣したシミュレーション3D環境から,提案モデルが学習可能であることが確認された。
論文 参考訳(メタデータ) (2022-11-19T03:55:09Z) - Uncertainty Guided Policy for Active Robotic 3D Reconstruction using
Neural Radiance Fields [82.21033337949757]
本稿では,物体の暗黙のニューラル表現の各光線に沿ったカラーサンプルの重量分布のエントロピーを計算した線量不確実性推定器を提案する。
提案した推定器を用いた新しい視点から, 基礎となる3次元形状の不確かさを推測することが可能であることを示す。
ニューラルラディアンス場に基づく表現における線量不確実性によって導かれる次ベクター選択ポリシーを提案する。
論文 参考訳(メタデータ) (2022-09-17T21:28:57Z) - GeoNeRF: Generalizing NeRF with Geometry Priors [2.578242050187029]
ニューラルラジアンス場に基づく一般化可能なフォトリアリスティック・ノベルビュー手法GeoNeRFを提案する。
我々のアプローチは、幾何学的推論と合成という2つの主要な段階から構成される。
実験により、GeoNeRFは様々な合成および実際のデータセット上で、最先端の一般化可能なニューラルネットワークレンダリングモデルより優れていることが示された。
論文 参考訳(メタデータ) (2021-11-26T15:15:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。