論文の概要: Hypothesis testing on invariant subspaces of non-symmetric matrices with applications to network statistics
- arxiv url: http://arxiv.org/abs/2303.18233v3
- Date: Wed, 14 May 2025 11:22:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-15 21:44:09.14287
- Title: Hypothesis testing on invariant subspaces of non-symmetric matrices with applications to network statistics
- Title(参考訳): 非対称行列の不変部分空間に関する仮説テストとネットワーク統計への応用
- Authors: Jérôme R. Simons,
- Abstract要約: mathbbRp × r$ の $nu が、mathbbRp × p$ の $M の不変部分空間の元であるかどうかをテストする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We extend the inference procedure for eigenvectors of Tyler (1981), which assumes symmetrizable matrices to generic invariant and singular subspaces of non-diagonalisable matrices to test whether $\nu \in \mathbb{R}^{p \times r}$ is an element of an invariant subspace of $M \in \mathbb{R}^{p \times p}$. Our results include a Wald test for full-vector hypotheses and a $t$-test for coefficient-wise hypotheses. We employ perturbation expansions of invariant subspaces from Sun (1991) and singular subspaces from Liu et al. (2007). Based on the former, we extend the popular Davis-Kahan bound to estimations of its higher-order polynomials and study how the bound simplifies for eigenspaces but attains complexity for generic invariant subspaces.
- Abstract(参考訳): シンメトリザブル行列を非対角行列の一般不変かつ特異部分空間に仮定し、$\nu \in \mathbb{R}^{p \times r}$が$M \in \mathbb{R}^{p \times p}$の不変部分空間の要素であるかどうかをテストする。
本研究の結果は,全ベクトル仮説に対するWaldテストと係数ワイド仮説に対する$t$-testを含む。
我々は、太陽 (1991) の不変部分空間と Liu et al (2007) の特異部分空間の摂動展開を用いる。
前者に基づいて、人気のあるデイビス=カハン境界を高階多項式の推定にまで拡張し、有界空間が固有空間に対して単純であるが、一般不変部分空間に対する複雑性を実現する方法を研究する。
関連論文リスト
- Asymptotic Theory of Eigenvectors for Latent Embeddings with Generalized Laplacian Matrices [8.874743539416825]
依存は新しいランダムマトリックス理論の 主要なボトルネックです
一般化ラプラシア行列(ATE-GL)を用いた潜伏埋め込みのための固有ベクトルの新しい枠組みを提案する。
提案するATE-GLフレームワークのいくつかの応用について論じ、いくつかの数値例を通してその妥当性を示す。
論文 参考訳(メタデータ) (2025-03-01T22:22:42Z) - Understanding Matrix Function Normalizations in Covariance Pooling through the Lens of Riemannian Geometry [63.694184882697435]
グローバル共分散プーリング(GCP)は、高レベルの表現の2階統計を利用して、ディープニューラルネットワーク(DNN)の性能を向上させることが実証されている。
論文 参考訳(メタデータ) (2024-07-15T07:11:44Z) - Entrywise error bounds for low-rank approximations of kernel matrices [55.524284152242096]
切り抜き固有分解を用いて得られたカーネル行列の低ランク近似に対するエントリーワイド誤差境界を導出する。
重要な技術的革新は、小さな固有値に対応するカーネル行列の固有ベクトルの非局在化結果である。
我々は、合成および実世界のデータセットの集合に関する実証的研究により、我々の理論を検証した。
論文 参考訳(メタデータ) (2024-05-23T12:26:25Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - On confidence intervals for precision matrices and the
eigendecomposition of covariance matrices [20.20416580970697]
本稿では,固定次元の共分散行列の固有ベクトルの個々のエントリに対する信頼性境界の計算に挑戦する。
逆共分散行列、いわゆる精度行列の成分を束縛する手法を導出する。
これらの結果の応用として,精度行列の非ゼロ値のテストを可能にする新しい統計テストを示す。
論文 参考訳(メタデータ) (2022-08-25T10:12:53Z) - Learning Linear Symmetries in Data Using Moment Matching [0.0]
データから直接、そのような対称性を学習する、教師なし、半教師なしの問題を考察する。
最悪の場合、この問題はグラフ自己同型問題と同じくらい難しい。
対称変換において固有ベクトルが固有値 -1 を持つべきものを選択する様々な方法の有効性を理論的および実証的に開発・比較する。
論文 参考訳(メタデータ) (2022-04-04T02:47:37Z) - When Random Tensors meet Random Matrices [50.568841545067144]
本稿では,ガウス雑音を伴う非対称次数-$d$スパイクテンソルモデルについて検討する。
検討したモデルの解析は、等価なスパイクされた対称テクシットブロック-ワイドランダム行列の解析に起因していることを示す。
論文 参考訳(メタデータ) (2021-12-23T04:05:01Z) - Test Set Sizing Via Random Matrix Theory [91.3755431537592]
本稿ではランダム行列理論の手法を用いて、単純な線形回帰に対して理想的なトレーニング-テストデータ分割を求める。
それは「理想」を整合性計量を満たすものとして定義し、すなわち経験的モデル誤差は実際の測定ノイズである。
本論文は,任意のモデルのトレーニングとテストサイズを,真に最適な方法で解決した最初の論文である。
論文 参考訳(メタデータ) (2021-12-11T13:18:33Z) - Minimax Estimation of Linear Functions of Eigenvectors in the Face of
Small Eigen-Gaps [95.62172085878132]
固有ベクトル摂動解析は様々な統計データ科学の応用において重要な役割を果たす。
未知の固有ベクトルの任意の線型関数の摂動を特徴付ける統計理論の一組を開発する。
自然の「プラグイン」推定器に固有の非無視バイアス問題を緩和するために,非バイアス推定器を開発する。
論文 参考訳(メタデータ) (2021-04-07T17:55:10Z) - Confidence-Optimal Random Embeddings [0.0]
本稿では、最適でデータに富む統計信頼度境界を持つjohnson-lindenstrauss分布を考案する。
境界は、任意のデータ次元、埋め込み、および歪み耐性に対して、数値的に最良である。
統計的精度の面での先行作業の改善に加え、データ可読アプローチの無意味な体制を正確に決定します。
論文 参考訳(メタデータ) (2021-04-06T18:00:02Z) - On Random Matrices Arising in Deep Neural Networks: General I.I.D. Case [0.0]
本研究では, ニューラルネットワーク解析に係わる無作為行列の積の特異値分布について検討した。
我々は、[22] の結果を一般化するために、[22] の確率行列理論のテクニックの、より簡潔な別のバージョンを使用します。
論文 参考訳(メタデータ) (2020-11-20T14:39:24Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
我々は高次元単一インデックスモデルのための正規化自由アルゴリズムを設計する。
暗黙正則化現象の理論的保証を提供する。
論文 参考訳(メタデータ) (2020-07-16T13:27:47Z) - Tackling small eigen-gaps: Fine-grained eigenvector estimation and
inference under heteroscedastic noise [28.637772416856194]
ノイズの観測から、固有ベクトル推定と低ランク行列の推測に2つの根本的な課題が生じる。
未知固有ベクトルに対する推定と不確実性定量化手法を提案する。
未知固有値に対する信頼区間を構築するための最適手順を確立する。
論文 参考訳(メタデータ) (2020-01-14T04:26:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。