論文の概要: Statistical and computational rates in high rank tensor estimation
- arxiv url: http://arxiv.org/abs/2304.04043v1
- Date: Sat, 8 Apr 2023 15:34:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 18:06:29.954375
- Title: Statistical and computational rates in high rank tensor estimation
- Title(参考訳): 高階テンソル推定における統計的および計算速度
- Authors: Chanwoo Lee and Miaoyan Wang
- Abstract要約: 高次のテンソルデータセットは一般的にレコメンデーションシステム、ニューロイメージング、ソーシャルネットワークに現れる。
高階モデルと低階モデルの両方を組み込んだ生成潜在変数テンソルモデルを考える。
統計的-計算的ギャップは 3 以上の潜時変テンソルに対してのみ現れることを示す。
- 参考スコア(独自算出の注目度): 11.193504036335503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Higher-order tensor datasets arise commonly in recommendation systems,
neuroimaging, and social networks. Here we develop probable methods for
estimating a possibly high rank signal tensor from noisy observations. We
consider a generative latent variable tensor model that incorporates both high
rank and low rank models, including but not limited to, simple hypergraphon
models, single index models, low-rank CP models, and low-rank Tucker models.
Comprehensive results are developed on both the statistical and computational
limits for the signal tensor estimation. We find that high-dimensional latent
variable tensors are of log-rank; the fact explains the pervasiveness of
low-rank tensors in applications. Furthermore, we propose a polynomial-time
spectral algorithm that achieves the computationally optimal rate. We show that
the statistical-computational gap emerges only for latent variable tensors of
order 3 or higher. Numerical experiments and two real data applications are
presented to demonstrate the practical merits of our methods.
- Abstract(参考訳): 高次のテンソルデータセットは一般的にレコメンデーションシステム、ニューロイメージング、ソーシャルネットワークに現れる。
ここでは,ノイズ観測から高階信号テンソルを推定する確率的手法を提案する。
我々は,単純なハイパーグラフモデル,単一インデックスモデル,低ランクcpモデル,低ランクタッカーモデルを含む,高ランクモデルと低ランクモデルの両方を組み込んだ生成的潜在変数テンソルモデルを考える。
信号テンソル推定の統計量と計算量の両方について総合的な結果が得られた。
高次元潜在変数テンソルはログランクであり、この事実はアプリケーションにおける低ランクテンソルの広範性を説明する。
さらに,計算最適速度を達成する多項式時間スペクトルアルゴリズムを提案する。
統計的-計算的ギャップは 3 以上の潜時変テンソルに対してのみ現れることを示す。
本手法の実用性を示すため,数値実験と2つの実データ応用を行った。
関連論文リスト
- Statistical Inference for Low-Rank Tensor Models [6.461409103746828]
本稿では,低タッカーランク信号テンソルの一般および低タッカーランク線形汎関数を推定するための統一的枠組みを提案する。
退化戦略の活用とロータッカーランク多様体の接空間への射影により、一般および構造化線型汎函数の推論が可能となる。
論文 参考訳(メタデータ) (2025-01-27T17:14:35Z) - Tensor cumulants for statistical inference on invariant distributions [49.80012009682584]
我々は,PCAが信号の大きさの臨界値で計算的に困難になることを示す。
我々は、与えられた次数の不変量に対して明示的でほぼ直交的な基底を与える新しい対象の集合を定義する。
また、異なるアンサンブルを区別する新しい問題も分析できます。
論文 参考訳(メタデータ) (2024-04-29T14:33:24Z) - Provable Tensor Completion with Graph Information [49.08648842312456]
本稿では,動的グラフ正規化テンソル完備問題の解法として,新しいモデル,理論,アルゴリズムを提案する。
我々はテンソルの低ランクおよび類似度構造を同時に捉える包括的モデルを開発する。
理論の観点からは、提案したグラフの滑らか度正規化と重み付きテンソル核ノルムとの整合性を示す。
論文 参考訳(メタデータ) (2023-10-04T02:55:10Z) - Low-Rank Tensor Function Representation for Multi-Dimensional Data
Recovery [52.21846313876592]
低ランクテンソル関数表現(LRTFR)は、無限解像度でメッシュグリッドを超えてデータを連続的に表現することができる。
テンソル関数に対する2つの基本的な概念、すなわちテンソル関数ランクとローランクテンソル関数分解を開発する。
提案手法は,最先端手法と比較して,提案手法の優越性と汎用性を裏付けるものである。
論文 参考訳(メタデータ) (2022-12-01T04:00:38Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
本研究は, モード駆動繊維による3症例の欠失を含む, 4症例の欠失パターンについて紹介する。
本モデルでは, 目的関数の非性にもかかわらず, 乗算器の交互データ演算法を統合することにより, 最適解を導出する。
論文 参考訳(メタデータ) (2022-05-19T08:37:56Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Estimation
from Incomplete Measurements [30.395874385570007]
基本的な課題は、高度に不完全な測定からテンソルを忠実に回収することである。
タッカー分解におけるテンソル因子を直接回復するアルゴリズムを開発した。
2つの正準問題に対する基底真理テンソルの線形独立率で確実に収束することを示す。
論文 参考訳(メタデータ) (2021-04-29T17:44:49Z) - Inference for Low-rank Tensors -- No Need to Debias [22.163281794187544]
本稿では,低ランクテンソルモデルの統計的推論について考察する。
階数 1 の PCA モデルに対して、個々の特異テンソル上での推論の理論を確立する。
最後に、理論的な発見を裏付けるシミュレーションが提示される。
論文 参考訳(メタデータ) (2020-12-29T16:48:02Z) - Enhanced nonconvex low-rank approximation of tensor multi-modes for
tensor completion [1.3406858660972554]
我々は、新しい低ランク近似テンソルマルチモード(LRATM)を提案する。
ブロックバウンド法に基づくアルゴリズムは,提案手法を効率的に解くために設計されている。
3種類の公開多次元データセットの数値計算結果から,本アルゴリズムは様々な低ランクテンソルを復元可能であることが示された。
論文 参考訳(メタデータ) (2020-05-28T08:53:54Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z) - Tensor denoising and completion based on ordinal observations [11.193504036335503]
我々は,不完全と思われる順序値の観測から,低ランクテンソル推定の問題を考える。
本稿では,マルチ線形累積リンクモデルを提案し,ランク制約付きM推定器を開発し,理論的精度の保証を得る。
提案した推定器は低ランクモデルのクラスにおいて最小限最適であることを示す。
論文 参考訳(メタデータ) (2020-02-16T07:09:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。