論文の概要: The Foliage Partition: An Easy-to-Compute LC-Invariant for Graph States
- arxiv url: http://arxiv.org/abs/2305.07645v1
- Date: Fri, 12 May 2023 17:55:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-15 11:53:10.058867
- Title: The Foliage Partition: An Easy-to-Compute LC-Invariant for Graph States
- Title(参考訳): Foliage Partition: グラフ状態に対する簡単な計算LC-不変式
- Authors: Adam Burchardt, Frederik Hahn
- Abstract要約: 本稿では,グラフ状態に対する計算容易なLC不変量である葉分割について紹介する。
グラフの葉にインスパイアされた我々の不変量は、葉、軸、双生児という観点で自然な図形表現を持つ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces the foliage partition, an easy-to-compute LC-invariant
for graph states, of computational complexity $\mathcal{O}(n^3)$ in the number
of qubits. Inspired by the foliage of a graph, our invariant has a natural
graphical representation in terms of leaves, axils, and twins. It captures
both, the connection structure of a graph and the $2$-body marginal properties
of the associated graph state. We relate the foliage partition to the size of
LC-orbits and use it to bound the number of LC-automorphisms of graphs. We also
show the invariance of the foliage partition when generalized to weighted
graphs and qudit graph states.
- Abstract(参考訳): 本稿では,グラフ状態に対する計算容易なLC不変量である葉分を,量子ビット数で計算複雑性$\mathcal{O}(n^3)$で紹介する。
グラフの葉にインスパイアされた我々の不変量は、葉、軸、双子という観点から自然な図形表現を持つ。
グラフの接続構造と、関連するグラフ状態の2ドルボディの限界特性の両方をキャプチャする。
葉分断をLC軌道のサイズに関連付け、それをグラフのLC自己同型数に限定する。
また,重み付きグラフとquditグラフに一般化した場合の葉分断の不変性を示す。
関連論文リスト
- Theoretical Insights into Line Graph Transformation on Graph Learning [3.0574700762497744]
線グラフ変換はグラフ理論において広く研究されており、線グラフの各ノードは元のグラフのエッジに対応する。
これは、変換された線グラフに適用された一連のグラフニューラルネットワーク(GNN)にインスピレーションを与え、様々なグラフ表現学習タスクに有効であることが証明された。
本研究では,Weisfeiler-Leman (WL) テストに挑戦することが知られている2種類のグラフ,Cai-F"urer-Immerman (CFI) グラフと強い正則グラフに着目した。
論文 参考訳(メタデータ) (2024-10-21T16:04:50Z) - Distinguishing Graph States by the Properties of Their Marginals [0.0]
グラフの辺構造に基づいて、計算が容易なLU不変量の族を導入する。
これらの不変量は、8量子ビット以下の全てのグラフ状態の全てのLU軌道と絡み合いクラスを一意に識別できることを示す。
また、より多くのノードを持つ絡み合いクラスの例についても論じる。
論文 参考訳(メタデータ) (2024-06-14T12:03:10Z) - Graph Generation via Spectral Diffusion [51.60814773299899]
本稿では,1)グラフラプラシア行列のスペクトル分解と2)拡散過程に基づく新しいグラフ生成モデルGRASPを提案する。
具体的には、固有ベクトルと固有値のサンプリングにデノナイジングモデルを用い、グラフラプラシアン行列と隣接行列を再構成する。
我々の置換不変モデルは各ノードの固有ベクトルに連結することでノードの特徴を扱える。
論文 参考訳(メタデータ) (2024-02-29T09:26:46Z) - Cross-View Graph Consistency Learning for Invariant Graph
Representations [16.007232280413806]
リンク予測のための不変グラフ表現を学習するクロスビューグラフ一貫性学習(CGCL)法を提案する。
本稿では,CGCL法の有効性を実証的かつ実験的に実証する。
論文 参考訳(メタデータ) (2023-11-20T14:58:47Z) - Structure-free Graph Condensation: From Large-scale Graphs to Condensed
Graph-free Data [91.27527985415007]
既存のグラフ凝縮法は、凝縮グラフ内のノードと構造の合同最適化に依存している。
我々は、大規模グラフを小さなグラフノード集合に蒸留する、SFGCと呼ばれる新しい構造自由グラフ凝縮パラダイムを提唱する。
論文 参考訳(メタデータ) (2023-06-05T07:53:52Z) - Graphon Pooling for Reducing Dimensionality of Signals and Convolutional
Operators on Graphs [131.53471236405628]
グラフ空間における[0, 1]2の分割上のグラフとグラフ信号の誘導的グラフ表現を利用する3つの方法を提案する。
これらの低次元表現がグラフとグラフ信号の収束列を構成することを証明している。
我々は,層間次元減少比が大きい場合,グラノンプーリングは文献で提案した他の手法よりも有意に優れていることを観察した。
論文 参考訳(メタデータ) (2022-12-15T22:11:34Z) - A Graph Convolution for Signed Directed Graphs [0.0]
署名付き有向グラフのグラフ畳み込みはまだ多くは提供されていない。
複素数を介してグラフ情報を符号化する複素エルミート隣接行列を提案する。
私たちの知る限りでは、これは標識のあるグラフに対する初めてのスペクトル畳み込みである。
論文 参考訳(メタデータ) (2022-08-23T01:58:35Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
本稿では,グラフクラスタメンバシップを潜在因子とするDGVAE(Dirichlet Graph Variational Autoencoder)を提案する。
バランスグラフカットにおける低パス特性により、入力グラフをクラスタメンバシップにエンコードする、Heattsと呼ばれるGNNの新しい変種を提案する。
論文 参考訳(メタデータ) (2020-10-09T07:35:26Z) - Hamiltonian systems, Toda lattices, Solitons, Lax Pairs on weighted
Z-graded graphs [62.997667081978825]
グラフ上の解に対して一次元の解を持ち上げることができる条件を特定する。
位相的に興味深いグラフの簡単な例であっても、対応する非自明なラックス対と関連するユニタリ変換は、Z階数グラフ上のラックス対に持ち上げないことを示す。
論文 参考訳(メタデータ) (2020-08-11T17:58:13Z) - Wasserstein-based Graph Alignment [56.84964475441094]
我々は,より小さいグラフのノードと大きなグラフのノードをマッチングすることを目的とした,1対多のグラフアライメント問題に対する新しい定式化を行った。
提案手法は,各タスクに対する最先端のアルゴリズムに対して,大幅な改善をもたらすことを示す。
論文 参考訳(メタデータ) (2020-03-12T22:31:59Z) - The Power of Graph Convolutional Networks to Distinguish Random Graph
Models: Short Version [27.544219236164764]
グラフ畳み込みネットワーク(GCN)はグラフ表現学習において広く使われている手法である。
サンプルグラフの埋め込みに基づいて異なるランダムグラフモデルを区別するGCNのパワーについて検討する。
論文 参考訳(メタデータ) (2020-02-13T17:58:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。