論文の概要: Manifold Diffusion Fields
- arxiv url: http://arxiv.org/abs/2305.15586v1
- Date: Wed, 24 May 2023 21:42:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-26 18:31:53.224342
- Title: Manifold Diffusion Fields
- Title(参考訳): 多様体拡散場
- Authors: Ahmed A. Elhag, Joshua M. Susskind, Miguel Angel Bautista
- Abstract要約: 多様体上で定義される連続関数の生成モデルを学ぶためのアプローチを提案する。
Manor Diffusion Fields (MDF) は複数の入出力ペアの集合によって形成される明示的なパラメトリゼーションを用いて関数を表現する。
- 参考スコア(独自算出の注目度): 3.2995359570845912
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Manifold Diffusion Fields (MDF), an approach to learn generative
models of continuous functions defined over Riemannian manifolds. Leveraging
insights from spectral geometry analysis, we define an intrinsic coordinate
system on the manifold via the eigen-functions of the Laplace-Beltrami
Operator. MDF represents functions using an explicit parametrization formed by
a set of multiple input-output pairs. Our approach allows to sample continuous
functions on manifolds and is invariant with respect to rigid and isometric
transformations of the manifold. Empirical results on several datasets and
manifolds show that MDF can capture distributions of such functions with better
diversity and fidelity than previous approaches.
- Abstract(参考訳): 我々は、リーマン多様体上で定義される連続函数の生成モデルを学ぶアプローチである多様体拡散場(MDF)を提案する。
スペクトル幾何解析の知見を活かし、ラプラス・ベルトラミ作用素の固有関数を介して多様体上の内在座標系を定義する。
MDFは複数の入出力対からなる明示的なパラメトリゼーションを用いて関数を表現する。
我々のアプローチは多様体上の連続函数をサンプリングすることができ、多様体の剛および等尺変換に関して不変である。
いくつかのデータセットや多様体の実証的な結果は、MDFがそのような関数の分布を以前の手法よりも多様性と忠実さで捉えることができることを示している。
関連論文リスト
- Towards Variational Flow Matching on General Geometries [7.5684697258210685]
RG-VFMはユークリッドVFMやベースライン法よりも効率的に幾何学的構造を捉えている。
多様体認識生成モデリングのための堅牢なフレームワークである。
論文 参考訳(メタデータ) (2025-02-18T16:02:10Z) - Categorical Flow Matching on Statistical Manifolds [12.646272756981672]
本稿では,情報幾何学に着想を得たパラメータ化確率尺度の多様体上でのフローマッチングフレームワークを提案する。
我々は,多様体間の微分同相法により数値安定性を克服する効率的なトレーニングとサンプリングアルゴリズムを開発した。
我々は、SFMが、既存のモデルがしばしば失敗するような統計多様体上でより複雑なパターンを学習できることを示した。
論文 参考訳(メタデータ) (2024-05-26T05:50:39Z) - Scaling Riemannian Diffusion Models [68.52820280448991]
非自明な多様体上の高次元タスクにスケールできることを示す。
我々は、$SU(n)$格子上のQCD密度と高次元超球面上の対照的に学習された埋め込みをモデル化する。
論文 参考訳(メタデータ) (2023-10-30T21:27:53Z) - A Geometric Insight into Equivariant Message Passing Neural Networks on
Riemannian Manifolds [1.0878040851638]
座標独立な特徴体に付随する計量は、主バンドルの原計量を最適に保存すべきである。
一定の時間ステップで拡散方程式の流れを離散化することにより, 多様体上のメッセージパッシング方式を得る。
グラフ上の高次拡散過程の離散化は、同変 GNN の新しい一般クラスをもたらす。
論文 参考訳(メタデータ) (2023-10-16T14:31:13Z) - Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes [57.396578974401734]
一般多様体上に生成拡散過程を構築するための原理的枠組みを導入する。
従来の拡散モデルの認知的アプローチに従う代わりに、橋梁プロセスの混合を用いて拡散過程を構築する。
混合過程を幾何学的に理解し,データ点への接する方向の重み付け平均としてドリフトを導出する。
論文 参考訳(メタデータ) (2023-10-11T06:04:40Z) - A Heat Diffusion Perspective on Geodesic Preserving Dimensionality
Reduction [66.21060114843202]
熱測地線埋め込みと呼ばれるより一般的な熱カーネルベースの多様体埋め込み法を提案する。
その結果,本手法は,地中真理多様体距離の保存において,既存の技術よりも優れていることがわかった。
また,連続体とクラスタ構造を併用した単一セルRNAシークエンシングデータセットに本手法を適用した。
論文 参考訳(メタデータ) (2023-05-30T13:58:50Z) - Convolutional Filtering on Sampled Manifolds [122.06927400759021]
サンプル多様体上の畳み込みフィルタリングは連続多様体フィルタリングに収束することを示す。
本研究は,ナビゲーション制御の問題点を実証的に明らかにした。
論文 参考訳(メタデータ) (2022-11-20T19:09:50Z) - The Manifold Scattering Transform for High-Dimensional Point Cloud Data [16.500568323161563]
本稿では,自然システムにおけるデータセットへの多様体散乱変換の実装のための実践的スキームを提案する。
本手法は信号の分類や多様体の分類に有効であることを示す。
論文 参考訳(メタデータ) (2022-06-21T02:15:00Z) - Measuring dissimilarity with diffeomorphism invariance [94.02751799024684]
DID(DID)は、幅広いデータ空間に適用可能なペアワイズな相似性尺度である。
我々は、DIDが理論的研究と実用に関係のある特性を享受していることを証明する。
論文 参考訳(メタデータ) (2022-02-11T13:51:30Z) - Partial Counterfactual Identification from Observational and
Experimental Data [83.798237968683]
観測データと実験データの任意の組み合わせから最適境界を近似する有効なモンテカルロアルゴリズムを開発した。
我々のアルゴリズムは、合成および実世界のデータセットに基づいて広範囲に検証されている。
論文 参考訳(メタデータ) (2021-10-12T02:21:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。