論文の概要: Hybrid Ground-State Quantum Algorithms based on Neural Schrödinger Forging
- arxiv url: http://arxiv.org/abs/2307.02633v2
- Date: Thu, 4 Apr 2024 16:27:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 20:32:28.082555
- Title: Hybrid Ground-State Quantum Algorithms based on Neural Schrödinger Forging
- Title(参考訳): ニューラルシュレーディンガー鍛造に基づくハイブリッド基底状態量子アルゴリズム
- Authors: Paulin de Schoulepnikoff, Oriel Kiss, Sofia Vallecorsa, Giuseppe Carleo, Michele Grossi,
- Abstract要約: エンタングルメント鍛造に基づく変分アルゴリズムは量子系の二分割を利用する。
本稿では, 生成ニューラルネットワークを用いたエンタングルメント鍛造法を提案する。
提案アルゴリズムは,既存のエンタングルメント鍛造の標準実装と比較して,同等あるいは優れた性能を達成可能であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entanglement forging based variational algorithms leverage the bi-partition of quantum systems for addressing ground state problems. The primary limitation of these approaches lies in the exponential summation required over the numerous potential basis states, or bitstrings, when performing the Schmidt decomposition of the whole system. To overcome this challenge, we propose a new method for entanglement forging employing generative neural networks to identify the most pertinent bitstrings, eliminating the need for the exponential sum. Through empirical demonstrations on systems of increasing complexity, we show that the proposed algorithm achieves comparable or superior performance compared to the existing standard implementation of entanglement forging. Moreover, by controlling the amount of required resources, this scheme can be applied to larger, as well as non permutation invariant systems, where the latter constraint is associated with the Heisenberg forging procedure. We substantiate our findings through numerical simulations conducted on spins models exhibiting one-dimensional ring, two-dimensional triangular lattice topologies, and nuclear shell model configurations.
- Abstract(参考訳): エンタングルメント鍛造に基づく変分アルゴリズムは、基底状態問題に対処するために量子系の二分割を利用する。
これらのアプローチの主な制限は、システム全体のシュミット分解を実行する際に、多くのポテンシャル基底状態、またはビットストリングに必要となる指数的な和である。
この課題を克服するために,生成型ニューラルネットワークを用いたエンタングルメント鍛造法を提案する。
複雑性が増大するシステムの実証実験を通じて,提案アルゴリズムは,既存のエンタングルメント鍛造の標準実装と比較して,同等あるいは優れた性能を達成可能であることを示す。
さらに、必要なリソースの量を制御することによって、後者の制約がハイゼンベルク鍛造手順と関連付けられているような非置換不変系と同様に、このスキームをより大きく適用することができる。
本研究では, 1次元リング, 2次元三角格子トポロジー, 核殻モデル構成を示すスピンモデルを用いて数値シミュレーションを行った。
関連論文リスト
- Entropy-driven entanglement forging [0.0]
本研究では、エントロピー駆動型エンタングルメント鍛造法を用いて、ノイズの多い中間スケール量子デバイスの限界に量子シミュレーションを適応させる方法について述べる。
提案手法は, エントロピー駆動型エンタングルメント鍛造法を用いて, ノイズの多い中間規模量子デバイスの限界に量子シミュレーションを適応させることが可能である。
論文 参考訳(メタデータ) (2024-09-06T16:54:41Z) - Avoiding barren plateaus via Gaussian Mixture Model [6.0599055267355695]
変分量子アルゴリズムは、量子コンピューティングにおいて最も代表的なアルゴリズムの1つである。
大量の量子ビット、ディープ・サーキット・レイヤ、グローバル・コスト・ファンクションを扱う場合、それらはしばしば訓練不能となる。
論文 参考訳(メタデータ) (2024-02-21T03:25:26Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
進化的アルゴリズムに基づく量子状態工学には、機械学習によるアプローチを採用しています。
我々は、単一のモード駆動マイクロ波共振器を介して相互作用する、量子ビットのネットワーク(直接結合のない人工原子の状態に符号化された)を考える。
アルゴリズムは理想的なノイズフリー設定で訓練されているにもかかわらず、高い量子忠実度とノイズに対するレジリエンスを観測する。
論文 参考訳(メタデータ) (2022-06-29T14:34:00Z) - Provably efficient variational generative modeling of quantum many-body
systems via quantum-probabilistic information geometry [3.5097082077065003]
パラメータ化混合状態に対する量子自然勾配降下の一般化を導入する。
また、堅牢な一階近似アルゴリズム、Quantum-Probabilistic Mirror Descentを提供する。
我々のアプローチは、モデル選択における柔軟性を実現するために、それまでのサンプル効率の手法を拡張しました。
論文 参考訳(メタデータ) (2022-06-09T17:58:15Z) - Numerical estimation of reachable and controllability sets for a
two-level open quantum system driven by coherent and incoherent controls [77.34726150561087]
この記事では、ゴリーニ-コサコフスキー--リンドブラッド--スダルシャンマスター方程式によって支配される2段階の開量子系を考える。
系の密度行列のブロッホパラメトリゼーションを用いて解析する。
論文 参考訳(メタデータ) (2021-06-18T14:23:29Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation [5.668795025564699]
オープン量子システムのダイナミクスに対処するためのアプローチを提案する。
自己回帰変換ニューラルネットワークを用いて量子状態をコンパクトに表現する。
効率的なアルゴリズムは、リウヴィリア超作用素の力学をシミュレートするために開発された。
論文 参考訳(メタデータ) (2020-09-11T18:00:00Z) - A Neural-Network Variational Quantum Algorithm for Many-Body Dynamics [15.435967947933404]
量子多体系の時間進化をシミュレートするニューラルネットワーク-ネットワーク変分量子アルゴリズムを提案する。
提案アルゴリズムは、測定コストの低い短期量子コンピュータに効率よく実装することができる。
論文 参考訳(メタデータ) (2020-08-31T02:54:09Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
我々は,非線型O(3)シグマモデルの固定点が,格子サイトあたり2キュービットしか持たないスピンモデルの量子相転移付近で再現可能であることを示す。
本稿では,弱い結合状態と量子臨界状態の両方において,断熱的基底状態の準備が複雑になる結果を得るためにトロッター法を適用した。
非単位ランダム化シミュレーション法に基づく量子アルゴリズムの提案と解析を行う。
論文 参考訳(メタデータ) (2020-06-28T23:44:12Z) - Active Model Estimation in Markov Decision Processes [108.46146218973189]
マルコフ決定過程(MDP)をモデル化した環境の正確なモデル学習のための効率的な探索の課題について検討する。
マルコフに基づくアルゴリズムは,本アルゴリズムと極大エントロピーアルゴリズムの両方を小サンプル方式で上回っていることを示す。
論文 参考訳(メタデータ) (2020-03-06T16:17:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。