論文の概要: Neural oscillators for generalization of physics-informed machine
learning
- arxiv url: http://arxiv.org/abs/2308.08989v1
- Date: Thu, 17 Aug 2023 13:50:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-21 16:33:52.803257
- Title: Neural oscillators for generalization of physics-informed machine
learning
- Title(参考訳): 物理不定形機械学習の一般化のためのニューラルオシレータ
- Authors: Taniya Kapoor, Abhishek Chandra, Daniel M. Tartakovsky, Hongrui Wang,
Alfredo Nunez, Rolf Dollevoet
- Abstract要約: 物理インフォームド機械学習(PIML)の最大の課題は、トレーニング領域を超えた一般化である。
本稿では,PIMLの一般化能力の向上をめざし,実用的で現実的な応用を促進することを目的とする。
我々は、PDEソリューションの因果性と時間的逐次特性を利用して、反復的なニューラルアーキテクチャを持つPIMLモデルを融合する。
- 参考スコア(独自算出の注目度): 1.893909284526711
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A primary challenge of physics-informed machine learning (PIML) is its
generalization beyond the training domain, especially when dealing with complex
physical problems represented by partial differential equations (PDEs). This
paper aims to enhance the generalization capabilities of PIML, facilitating
practical, real-world applications where accurate predictions in unexplored
regions are crucial. We leverage the inherent causality and temporal sequential
characteristics of PDE solutions to fuse PIML models with recurrent neural
architectures based on systems of ordinary differential equations, referred to
as neural oscillators. Through effectively capturing long-time dependencies and
mitigating the exploding and vanishing gradient problem, neural oscillators
foster improved generalization in PIML tasks. Extensive experimentation
involving time-dependent nonlinear PDEs and biharmonic beam equations
demonstrates the efficacy of the proposed approach. Incorporating neural
oscillators outperforms existing state-of-the-art methods on benchmark problems
across various metrics. Consequently, the proposed method improves the
generalization capabilities of PIML, providing accurate solutions for
extrapolation and prediction beyond the training data.
- Abstract(参考訳): 物理情報処理機械学習(PIML)の主な課題は、特に偏微分方程式(PDE)で表される複雑な物理問題を扱う場合、トレーニング領域を超えて一般化することである。
本稿では,未探索領域における正確な予測が不可欠である実世界の実践的応用を促進するため,PIMLの一般化能力の向上を目的とする。
我々は,pde解の固有因果性と時間的シーケンシャル特性を利用して,神経発振器と呼ばれる常微分方程式系に基づく反復的神経構造をpimlモデルに融合する。
長時間の依存関係を効果的に捕捉し、爆発的および消滅する勾配問題を緩和することで、ニューラル発振器はPIMLタスクの一般化を促進する。
時間依存非線形PDEとバイハーモニックビーム方程式を含む大規模な実験は,提案手法の有効性を示す。
ニューラル発振器の組み込みは、様々なメトリクスにわたるベンチマーク問題における既存の最先端の手法よりも優れている。
提案手法はPIMLの一般化能力を向上し,トレーニングデータを超えた外挿および予測のための正確な解を提供する。
関連論文リスト
- Physics-informed kernel learning [7.755962782612672]
本稿では,物理インフォームド・リスク関数を最小化するトラクタブルな推定器を提案する。
PIKLは精度と計算時間の両方で物理インフォームドニューラルネットワークより優れていることを示す。
論文 参考訳(メタデータ) (2024-09-20T06:55:20Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - Slow Invariant Manifolds of Singularly Perturbed Systems via
Physics-Informed Machine Learning [0.0]
特異摂動系の遅い不変多様体(SIM)を近似するための物理インフォームド・機械学習(PIML)手法を提案する。
提案手法では,従来のGSPT法よりも精度の高い近似法が提案されている。
また、学習過程において必要となる微分の記号的、自動的、数値的近似の計算コストの比較を行う。
論文 参考訳(メタデータ) (2023-09-14T14:10:22Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
ニューラル固有微分方程式アルゴリズム(NESDE)を導入する。
NESDEは個別化モデリング、新しい治療ポリシーへの調整可能な一般化、高速で連続的でクローズドな予測を提供する。
本研究は, 総合的・現実的な医療問題におけるNESDEの堅牢性を実証し, 学習力学を用いて, 模擬医療体育環境の公開を行う。
論文 参考訳(メタデータ) (2023-06-24T17:01:51Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
我々は、統合された神経部分遅延微分方程式の新規で汎用的な方法論を開発した。
マルコフ型および非マルコフ型ニューラルネットワーク(NN)の閉包パラメータ化を用いて, 偏微分方程式(PDE)における既存/低忠実度力学モデルを直接拡張する。
本研究では, 非線形波動, 衝撃波, 海洋酸性化モデルに基づく4つの実験セットを用いて, 新しい一般化ニューラルクロージャモデル(gnCMs)の枠組みを実証する。
論文 参考訳(メタデータ) (2023-01-15T21:57:43Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - Multi-resolution partial differential equations preserved learning
framework for spatiotemporal dynamics [11.981731023317945]
物理インフォームドディープラーニング(PiDL)は、物理原理をモデルに組み込むことによって、これらの課題に対処する。
我々は、ニューラルネットワークアーキテクチャに離散化された支配方程式を焼いて、物理の事前知識を活用することを提案する。
離散化されたPDEを畳み込み残差ネットワークを介して多分解能設定に埋め込むことにより、一般化可能性と長期予測を大幅に改善する。
論文 参考訳(メタデータ) (2022-05-09T01:27:58Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Applying physics-based loss functions to neural networks for improved
generalizability in mechanics problems [3.655021726150368]
Informed Machine Learning(PIML)は、過去5年間で、科学者や研究者が機械学習の進歩によって得られる利点を活用するために勢いを増しています。
本研究では,物理に基づく損失関数の利用に対処する,PIMLを利用するための新しいアプローチについて論じる。
論文 参考訳(メタデータ) (2021-04-30T20:31:09Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。